Particle acceleration in Horava–Lifshitz black holes

  • J. Sadeghi
  • B. PourhassanEmail author
Regular Article - Theoretical Physics


In this paper we calculate the center-of-mass energy of two colliding test particles near the rotating and non-rotating Horava–Lifshitz black hole. For the case of a slowly rotating KS solution of Horava–Lifshitz black hole we compare our results with the case of Kerr black holes. We confirm the limited value of the center-of-mass energy for static black holes and unlimited value of the center-of-mass energy for rotating black holes. Numerically, we discuss temperature dependence of the center-of-mass energy on the black hole horizon. We obtain the critical angular momentum of particles. In this limit the center-of-mass energy of two colliding particles in the neighborhood of the rotating Horava–Lifshitz black hole could be arbitrarily high. We found appropriate conditions where the critical angular momentum could have an orbit outside the horizon. Finally, we obtain the center-of-mass energy corresponding to this circle orbit.


Black Hole High Energy Phys Black Hole Solution Particle Accelerator Black Hole Horizon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    M. Banados, J. Silk, S.M. West, Kerr black holes as particle accelerators to arbitrarily high energy. Phys. Rev. Lett. 103, 111102 (2009). arXiv:0909.0169 [hep-ph] ADSCrossRefGoogle Scholar
  2. 2.
    T. Jacobson, T.P. Sotiriou, Spinning black holes as particle accelerators. Phys. Rev. Lett. 104, 021101 (2010). arXiv:0911.3363 [gr-qc] ADSCrossRefGoogle Scholar
  3. 3.
    K. Lake, Particle accelerators inside spinning black holes. Phys. Rev. Lett. 104, 211102 (2010). arXiv:1001.5463 [gr-qc] ADSCrossRefGoogle Scholar
  4. 4.
    A.A. Grib, Yu.V. Pavlov, On particle collisions in the gravitational field of black hole. Astropart. Phys. 34, 581–586 (2011). arXiv:1001.0756 [gr-qc] ADSCrossRefGoogle Scholar
  5. 5.
    A.A. Grib, Yu.V. Pavlov, On particle collisions and extraction of energy from a rotating black hole. arXiv:1004.0913 [gr-qc]
  6. 6.
    A.A. Grib, Yu.V. Pavlov, On particles collisions near rotating black holes. Gravit. Cosmol. 17, 42–46 (2011). arXiv:1010.2052 [gr-qc] ADSzbMATHCrossRefGoogle Scholar
  7. 7.
    S.-W. Wei, Y.-X. Liu, H. Guo, C.-E. Fu, Charged spinning black holes as particle accelerators. Phys. Rev. D 82, 103005 (2010). arXiv:1006.1056 [hep-th] ADSCrossRefGoogle Scholar
  8. 8.
    O.B. Zaslavskii, Acceleration of particles by nonrotating charged black holes. JETP Lett. 92, 571 (2010). arXiv:1007.4598 [gr-qc] ADSCrossRefGoogle Scholar
  9. 9.
    O.B. Zaslavskii, Acceleration of particles as universal property of rotating black holes. Phys. Rev. D 82, 083004 (2010). arXiv:1007.3678v2 [gr-qc] MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    O.B. Zaslavskii, Acceleration of particles by black holes—general explanation. Class. Quantum Gravity 28, 105010 (2011), arXiv:1011.0167 [gr-qc] MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    M. Kimura, K.-i. Nakao, H. Tagoshi, Acceleration of colliding shells around a black hole—validity of test particle approximation in BSW process. Phys. Rev. D 83, 044013 (2011). arXiv:1010.5438 [gr-qc] ADSCrossRefGoogle Scholar
  12. 12.
    M. Banados, B. Hassanain, J. Silk, S.M. West, Emergent flux from particle collisions near a Kerr black hole. Phys. Rev. D 83, 023004 (2011). arXiv:1010.2724 [astro-ph.CO] ADSCrossRefGoogle Scholar
  13. 13.
    T. Harada, M. Kimura, Collision of an innermost stable circular orbit particle around a Kerr black hole. Phys. Rev. D 83, 024002 (2011). arXiv:1010.0962 [gr-qc] ADSCrossRefGoogle Scholar
  14. 14.
    P.-J. Mao, R. Li, L.-Y. Jia, J.-R. Ren, Kaluza-Klein black hole as particles accelerators. arXiv:1008.2660 [hep-th]
  15. 15.
    S.-W. Wei, Y.-X. Liu, H.-T. Li, F.-W. Chen, Particle collisions on stringy black hole background. J. High Energy Phys. 1012, 066 (2010). arXiv:1007.4333 [hep-th] ADSCrossRefGoogle Scholar
  16. 16.
    Y. Li, J. Yang, Y.-L. Li, S.-W. Wei, Y.-X. Liu, Particle acceleration in Kerr-(anti-) de Sitter black hole backgrounds. Class. Quantum Gravity 28, 225006 (2011). arXiv:1012.0748 [hep-th] ADSCrossRefGoogle Scholar
  17. 17.
    C. Liu, S. Chen, C. Ding, J. Jing, Kerr-Taub-NUT black hole as particle accelerators. Phys. Lett. B 701, 285 (2011). arxiv:1012.5126 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    P. Horava, Spectral dimension of the universe in quantum gravity at a Lifshitz point. Phys. Rev. Lett. 102, 161301 (2009). arXiv:0902.3657 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    P. Horava, Quantum gravity at a Lifshitz point. Phys. Rev. D 79, 084008 (2009). arXiv:0901.3775 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    P. Horava, Membranes at quantum criticality. J. High Energy Phys. 0903, 020 (2009). arXiv:0812.4287 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    P. Horava, Quantum criticality and Yang-Mills Gauge theory. Phys. Lett. B 694, 172 (2010). arXiv:0811.2217 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    G. Calcagni, Cosmology of the Lifshitz universe. J. High Energy Phys. 0909, 112 (2009). arXiv:0904.0829 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    R.G. Cai, L.M. Cao, N. Ohta, Topological black holes in Horava–Lifshitz gravity. Phys. Rev. D 80, 024003 (2009). arXiv:0904.3670 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    R.G. Cai, Y. Liu, Y.W. Sun, On the z=4 Horava–Lifshitz gravity. J. High Energy Phys. 0906, 010 (2009). arXiv:0904.4104 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    B.R. Majhi, Hawking radiation and black hole spectroscopy in Horava–Lifshitz gravity. Phys. Lett. B 686, 49 (2010). arXiv:0911.3239 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    Y.S. Myung, Y.W. Kim, Thermodynamics of Horava–Lifshitz black holes. arXiv:0905.0179 [hep-th]
  27. 27.
    H.W. Lee, Y.-W. Kim, Y.S. Myung, Slowly rotating black holes in the Horava–Lifshitz gravity. Eur. Phys. J. C 70, 367–371 (2010). arXiv:1008.2243 [hep-th] ADSCrossRefGoogle Scholar
  28. 28.
    A.N. Aliev, Ç. Sentürk, Slowly rotating black hole solutions to Horava–Lifshitz gravity. Phys. Rev. D 82, 104016 (2010) ADSCrossRefGoogle Scholar
  29. 29.
    I. Radinschi, F. Rahaman, A. Banerjee, On the energy of Horava–Lifshitz black holes. Int. J. Theor. Phys. 50(9), 2906–2916 (2011). arXiv:1012.0986 [gr-qc] MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    A. Kehagias, K. Sfetsos, The black hole and FRW geometries of non-relativistic gravity. Phys. Lett. B 678, 123 (2009) MathSciNetADSCrossRefGoogle Scholar
  31. 31.
    H. Lu, J. Mei, C.N. Pope, Solutions to Horava gravity. Phys. Rev. Lett. 103, 091301 (2009). arXiv:0904.1595 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  32. 32.
    V. Enolskii, B. Hartmann, V. Kagramanova, J. Kunz, C. Laemmerzahl, P. Sirimachan, Particle motion in Horava–Lifshitz black hole space-times. arXiv:1106.4913 [gr-qc]
  33. 33.
    B. Gwak, B.-H. Lee, Particle probe of Horava–Lifshitz gravity. J. Cosmol. Astropart. Phys. 09, 031 (2010). arXiv:1005.2805 ADSCrossRefGoogle Scholar
  34. 34.
    A. Abdujabbarov, B. Ahmedov, B. Ahmedov, Energy extraction and particle acceleration around rotating black hole in Horava–Lifshitz gravity. Phys. Rev. D 84, 044044 (2011). arXiv:1107.5389 [astro-ph.SR] ADSCrossRefGoogle Scholar
  35. 35.
    A. Abdujabbarov, B. Ahmedov, A. Hakimov, Particle motion around black hole in Horava–Lifshitz gravity. Phys. Rev. D 83, 044053 (2011). arXiv:1101.4741 [gr-qc] ADSCrossRefGoogle Scholar
  36. 36.
    E. Kiritsis, G. Kofinas, On Horava–Lifshitz black holes. arXiv:0910.5487 [hep-th]
  37. 37.
    G. Koutsoumbas, P. Pasipoularides, Black hole solutions in Horava–Lifshitz Gravity with cubic terms. arXiv:1006.3199 [hep-th]
  38. 38.
    G. Koutsoumbas, E. Papantonopoulos, P. Pasipoularides, M. Tsoukalas, Black hole solutions in 5D Horava–Lifshitz gravity. arXiv:1004.2289 [hep-th]

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2012

Authors and Affiliations

  1. 1.Sciences Faculty, Department of PhysicsMazandaran UniversityBabolsarIran

Personalised recommendations