Advertisement

Hawking radiation temperatures in non-stationary Kerr black holes with different tortoise coordinate transformations

  • X. G. Lan
  • Q. Q. Jiang
  • L. F. WeiEmail author
Regular Article - Theoretical Physics

Abstract

We apply the Damour–Ruffini–Sannan method to study the Hawking radiations of scalar and Dirac particles in non-stationary Kerr black holes under different tortoise coordinate transformations. We found that all the relevant Hawking radiation spectra show still the blackbody ones, while the Hawking temperatures are strongly related to the used tortoise coordinate transformations. The properties of these dependences are discussed analytically and numerically. Our results imply that proper selections of tortoise coordinate transformations should be important in the studies of Hawking radiations and the correct selection would be given by the experimental observations in the future.

Keywords

Black Hole Event Horizon Kerr Black Hole Outgoing Wave Dirac Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S.W. Hawking, Nature 30, 248 (1974) Google Scholar
  2. 2.
    S.W. Hawking, Commun. Math. Phys. 43, 199 (1975) MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    G.W. Gibbons, S.W. Hawking, Phys. Rev. D 15, 2752 (1977) MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    D. Hofmann, W. Kummer, Eur. Phys. J. C 48, 291 (2005) ADSCrossRefGoogle Scholar
  5. 5.
    M.R. Setare, Eur. Phys. J. C 49, 865 (2007) MathSciNetADSzbMATHCrossRefGoogle Scholar
  6. 6.
    P. Castorina, D. Kharzeev, H. Satz, Eur. Phys. J. C 52, 187 (2007) ADSCrossRefGoogle Scholar
  7. 7.
    Q.Q. Jiang, S.Q. Wu, Phys. Lett. B 647, 200 (2007) MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    T. Damour, R. Ruffini, Phys. Rew. D 14, 332 (1976) ADSCrossRefGoogle Scholar
  9. 9.
    S. Sannan, Gen. Relativ. Gravit. 20, 139 (1988) MathSciNetCrossRefGoogle Scholar
  10. 10.
    Q.Q. Jiang, S.Q. Wu, X. Cai, Phys. Rev. D 75, 064029 (2007) MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    Z. Zhao, X. Dai, Mod. Phys. Lett. A 7, 1771 (1992) MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. 12.
    Z. Zhao, Z.Q. Luo, X.X. Dai, Nuovo Cimento B 109, 483 (1994) MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    J.Y. Zhang, Z, Zhao. Phys. Lett. B 618, 14 (2005) MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    Q.Q. Jiang, S.Z. Yang, H.L. Li, Chin. Phys. 14, 1736 (2005) ADSCrossRefGoogle Scholar
  15. 15.
    J. Yang, Z. Zhao, W.B. Liu, Astrophys. Space Sci. 331, 627 (2011) ADSzbMATHCrossRefGoogle Scholar
  16. 16.
    H. Ding, X.M. Liu, W.B. Liu, Can. J. Phys. 89, 667 (2011) ADSCrossRefGoogle Scholar
  17. 17.
    M. Carmeli, M. Kaye, Ann. Phys. 103, 197 (1977) MathSciNetGoogle Scholar
  18. 18.
    C. Gonzalez, L. Herrera, J. Jimenez, J. Math. Phys. 20, 837 (1979) MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    S.Q. Wu, X. Cai, Gen. Relativ. Gravit. 34, 557 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    S.Q. Wu, X. Cai, Chin. Phys. Lett. 19, 141 (2002) ADSCrossRefGoogle Scholar
  21. 21.
    S.Q. Wu, X. Cai, Gen. Relativ. Gravit. 33, 1181 (2001) MathSciNetADSzbMATHCrossRefGoogle Scholar
  22. 22.
    M. Sasaki, T. Nakamura, Prog. Theor. Phys. 67, 1788 (1982) MathSciNetADSzbMATHCrossRefGoogle Scholar
  23. 23.
    J.D. Bekenstein, Phys. Rev. D 9, 3292 (1974) ADSCrossRefGoogle Scholar
  24. 24.
    J.Y. Zhang, Z. Zhao, Nucl. Phys. B 725, 173 (2005) ADSzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2012

Authors and Affiliations

  1. 1.Quantum Optoelectronics LaboratorySouthwest Jiaotong UniversityChengduChina
  2. 2.Institute of Theoretical PhysicsChina West Normal UniversityNanchongChina
  3. 3.State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and EngineeringSun Yat-Sen UniversityGuangzhouChina

Personalised recommendations