Results from 730 kg days of the CRESST-II Dark Matter search

  • G. Angloher
  • M. Bauer
  • I. Bavykina
  • A. Bento
  • C. Bucci
  • C. Ciemniak
  • G. Deuter
  • F. von Feilitzsch
  • D. Hauff
  • P. Huff
  • C. Isaila
  • J. Jochum
  • M. Kiefer
  • M. Kimmerle
  • J.-C. Lanfranchi
  • F. Petricca
  • S. Pfister
  • W. Potzel
  • F. Pröbst
  • F. Reindl
  • S. Roth
  • K. Rottler
  • C. Sailer
  • K. Schäffner
  • J. Schmaler
  • S. Scholl
  • W. Seidel
  • M. v. Sivers
  • L. Stodolsky
  • C. Strandhagen
  • R. Strauß
  • A. Tanzke
  • I. Usherov
  • S. Wawoczny
  • M. Willers
  • A. Zöller
Open Access
Regular Article - Experimental Physics

Abstract

The CRESST-II cryogenic Dark Matter search, aiming at detection of WIMPs via elastic scattering off nuclei in CaWO4 crystals, completed 730 kg days of data taking in 2011. We present the data collected with eight detector modules, each with a two-channel readout; one for a phonon signal and the other for coincidently produced scintillation light. The former provides a precise measure of the energy deposited by an interaction, and the ratio of scintillation light to deposited energy can be used to discriminate different types of interacting particles and thus to distinguish possible signal events from the dominant backgrounds.

Sixty-seven events are found in the acceptance region where a WIMP signal in the form of low energy nuclear recoils would be expected. We estimate background contributions to this observation from four sources: (1) “leakage” from the e/γ-band (2) “leakage” from the α-particle band (3) neutrons and (4) 206Pb recoils from 210Po decay. Using a maximum likelihood analysis, we find, at a statistical significance of more than 4σ, that these sources alone are not sufficient to explain the data. The addition of a signal due to scattering of relatively light WIMPs could account for this discrepancy, and we determine the associated WIMP parameters.

References

  1. 1.
    G. Angloher et al. (CRESST Collaboration), Astropart. Phys. 31, 270 (2009). arXiv:0809.1829 ADSCrossRefGoogle Scholar
  2. 2.
    G. Angloher et al. (CRESST Collaboration), Astropart. Phys. 23, 325 (2005). astro-ph/0408006 ADSCrossRefGoogle Scholar
  3. 3.
    P. Huff, Q. Kronseder, F. Pröbst, J. Schmaler, W. Seidel, Quenching factors of CaWO4 and their microscopic explanation, to be published Google Scholar
  4. 4.
    H. Wulandari, J. Jochum, W. Rau, F. von Feilitzsch, Astropart. Phys. 22, 313 (2004). hep-ex/0312050 ADSCrossRefGoogle Scholar
  5. 5.
    S. Scholl, Neutron background simulation for the CRESST-II experiment, Ph.D. thesis, University of Tübingen (2011) Google Scholar
  6. 6.
    J. Ziegler et al., Stopping and Range of Ions in Matter, SRIM-2011, http://www.srim.org
  7. 7.
    R. Barlow, Nucl. Instrum. Methods A 297, 496 (1990) ADSCrossRefGoogle Scholar
  8. 8.
    S.S. Wilks, Ann. Math. Stat. 9, 60 (1938) MATHCrossRefGoogle Scholar
  9. 9.
    F. James, Comput. Phys. Commun. 10, 343 (1975) ADSCrossRefGoogle Scholar
  10. 10.
    F. Beaujean, A. Caldwell, D. Kollar, K. Kroeninger, Phys. Rev. D 83, 012004 (2011). arXiv:1011.1674 ADSCrossRefGoogle Scholar
  11. 11.
    J.D. Lewin, P.F. Smith, Astropart. Phys. 6, 87 (1996) ADSCrossRefGoogle Scholar
  12. 12.
    Z. Ahmed et al. (CDMS Collaboration), Science 327, 1619 (2010). arXiv:0912.3592 ADSCrossRefGoogle Scholar
  13. 13.
    Z. Ahmed et al. (CDMS Collaboration), Phys. Rev. Lett. 106, 131302 (2010). arXiv:1011.2482 ADSCrossRefGoogle Scholar
  14. 14.
    E. Aprile et al. (XENON100 Collaboration), arXiv:1104.2549 (2011)
  15. 15.
    J. Angle et al. (XENON100 Collaboration), Phys. Rev. Lett. 107, 051301 (2011). arXiv:1104.3088 ADSCrossRefGoogle Scholar
  16. 16.
    E. Armengaud et al. (EDELWEISS Collaboration), arXiv:1103.4070 (2011)
  17. 17.
    C.E. Aalseth et al. (CoGeNT collaboration), Phys. Rev. Lett. 107, 141301 (2011). arXiv:1106.0650 ADSCrossRefGoogle Scholar
  18. 18.
    C. Savage, G. Gelmini, P. Gondolo, K. Freese, J. Cosmol. Astropart. Phys. 0904, 010 (2009). arXiv:0808.3607 ADSCrossRefGoogle Scholar
  19. 19.
    A. Brown, S. Henry, H. Kraus, C. McCabe, arXiv:1109.2589 (2011)
  20. 20.
    S. Yellin, Phys. Rev. D 66, 032005 (2002). physics/0203002 ADSCrossRefGoogle Scholar
  21. 21.
    J. Åström et al., Phys. Lett. A 356, 262 (2006) MATHCrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  • G. Angloher
    • 1
  • M. Bauer
    • 2
  • I. Bavykina
    • 1
  • A. Bento
    • 1
    • 5
  • C. Bucci
    • 3
  • C. Ciemniak
    • 4
  • G. Deuter
    • 2
  • F. von Feilitzsch
    • 4
  • D. Hauff
    • 1
  • P. Huff
    • 1
  • C. Isaila
    • 4
  • J. Jochum
    • 2
  • M. Kiefer
    • 1
  • M. Kimmerle
    • 2
  • J.-C. Lanfranchi
    • 4
  • F. Petricca
    • 1
  • S. Pfister
    • 4
  • W. Potzel
    • 4
  • F. Pröbst
    • 1
  • F. Reindl
    • 1
  • S. Roth
    • 4
  • K. Rottler
    • 2
  • C. Sailer
    • 2
  • K. Schäffner
    • 1
  • J. Schmaler
    • 1
  • S. Scholl
    • 2
  • W. Seidel
    • 1
  • M. v. Sivers
    • 4
  • L. Stodolsky
    • 1
  • C. Strandhagen
    • 2
  • R. Strauß
    • 4
  • A. Tanzke
    • 1
  • I. Usherov
    • 2
  • S. Wawoczny
    • 4
  • M. Willers
    • 4
  • A. Zöller
    • 4
  1. 1.Max-Planck-Institut für PhysikMünchenGermany
  2. 2.Eberhard-Karls-Universität TübingenTübingenGermany
  3. 3.Laboratori Nazionali del Gran SassoINFNAssergiItaly
  4. 4.Physik-Department E15Technische Universität MünchenGarchingGermany
  5. 5.Departamento de FisicaUniversidade de CoimbraCoimbraPortugal

Personalised recommendations