Measurement of dijet production in diffractive deep-inelastic scattering with a leading proton at HERA

Abstract

The cross section of diffractive deep-inelastic scattering epeXp is measured, where the system X contains at least two jets and the leading final state proton is detected in the H1 Forward Proton Spectrometer. The measurement is performed for fractional proton longitudinal momentum loss x <0.1 and covers the range 0.1<|t|<0.7 GeV2 in squared four-momentum transfer at the proton vertex and 4<Q 2<110 GeV2 in photon virtuality. The differential cross sections extrapolated to |t|<1 GeV2 are in agreement with next-to-leading order QCD predictions based on diffractive parton distribution functions extracted from measurements of inclusive and dijet cross sections in diffractive deep-inelastic scattering. The data are also compared with leading order Monte Carlo models.

References

  1. 1.

    C. Adloff et al. (H1 Collaboration), Z. Phys. C 76, 613 (1997). arXiv:hep-ex/9708016

    Article  Google Scholar 

  2. 2.

    A. Aktas et al. (H1 Collaboration), Eur. Phys. J. C 48, 715 (2006). arXiv:hep-ex/0606004

    ADS  Article  Google Scholar 

  3. 3.

    A. Aktas et al. (H1 Collaboration), J. High Energy Phys. 0710, 042 (2007). arXiv:0708.3217

    Google Scholar 

  4. 4.

    A. Aktas et al. (H1 Collaboration), Eur. Phys. J. C 51, 549 (2007). arXiv:hep-ex/0703022

    ADS  Article  Google Scholar 

  5. 5.

    A. Aktas et al. (H1 Collaboration), Eur. Phys. J. C 50, 1 (2007). arXiv:hep-ex/0610076

    ADS  Article  Google Scholar 

  6. 6.

    S. Chekanov et al. (ZEUS Collaboration), Eur. Phys. J. C 52, 813 (2007). arXiv:0708.1415

    ADS  Article  Google Scholar 

  7. 7.

    S. Chekanov et al. (ZEUS Collaboration), Nucl. Phys. B 816, 1 (2009). arXiv:0812.2003

    ADS  Article  Google Scholar 

  8. 8.

    S. Chekanov et al. (ZEUS Collaboration), Nucl. Phys. B 831, 1 (2010). arXiv:0911.4119

    ADS  MATH  Article  Google Scholar 

  9. 9.

    J. Collins, Phys. Rev. D 57, 3051 (1998) [Erratum-ibid. D 61 (2000) 019902]; arXiv:hep-ph/9709499

    ADS  Article  Google Scholar 

  10. 10.

    V. Gribov, L. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972) [Yad. Fiz. 15 (1972) 781]

    Google Scholar 

  11. 11.

    V. Gribov, L. Lipatov, Sov. J. Nucl. Phys. 15, 675 (1972) [Yad. Fiz. 15 (1972) 1218]

    Google Scholar 

  12. 12.

    Y. Dokshitzer, Sov. Phys. JETP 46, 641 (1977) [Zh. Eksp. Teor. Fiz. 73 (1977) 1216]

    ADS  Google Scholar 

  13. 13.

    G. Altarelli, G. Parisi, Nucl. Phys. B 126, 298 (1977)

    ADS  Article  Google Scholar 

  14. 14.

    L. Trentadue, G. Veneziano, Phys. Lett. B 323, 201 (1994)

    ADS  Article  Google Scholar 

  15. 15.

    A. Aktas et al. (H1 Collaboration), Eur. Phys. J. C 48, 749 (2006). arXiv:hep-ex/0606003

    ADS  Article  Google Scholar 

  16. 16.

    A. Aktas et al. (H1 Collaboration), Eur. Phys. J. C 71, 1578 (2011). arXiv:1010.1476

    ADS  Article  Google Scholar 

  17. 17.

    G. Ingelman, P.E. Schlein, Phys. Lett. B 152, 256 (1985)

    ADS  Article  Google Scholar 

  18. 18.

    A. Donnachie, P.V. Landshoff, Phys. Lett. B 191, 309 (1987)

    ADS  Article  Google Scholar 

  19. 19.

    H. Jung, Comput. Phys. Commun. 86, 147 (1995)

    ADS  Article  Google Scholar 

  20. 20.

    J. Owens, Phys. Rev. D 30, 943 (1984)

    ADS  Article  Google Scholar 

  21. 21.

    G.A. Schuler, T. Sjöstrand, Z. Phys. C 68, 607 (1995). arXiv:hep-ph/9503384

    ADS  Article  Google Scholar 

  22. 22.

    J. Bartels, C. Ewerz, H. Lotter, M. Wüsthoff, M. Diehl, Phys. Lett. B 379, 239 (1996). arXiv:hep-ph/9609239

    ADS  Article  Google Scholar 

  23. 23.

    J. Bartels, H. Jung, M. Wüsthoff, Eur. Phys. J. C 11, 111 (1999)

    ADS  Google Scholar 

  24. 24.

    M. Hansson, H. Jung, arXiv:hep-ph/0309009

  25. 25.

    A. Edin, G. Ingelman, J. Rathsman, Phys. Lett. B 366, 371 (1996). arXiv:hep-ph/9508386

    ADS  Article  Google Scholar 

  26. 26.

    A. Edin, G. Ingelman, J. Rathsman, Z. Phys. C 75, 57 (1997). arXiv:hep-ph/9605281

    Article  Google Scholar 

  27. 27.

    J. Rathsman, Phys. Lett. B 452, 364 (1999). arXiv:hep-ph/9812423

    ADS  Article  Google Scholar 

  28. 28.

    A. Edin, G. Ingelman, J. Rathsman, Comput. Phys. Commun. 101, 108 (1997). arXiv:hep-ph/9605286

    ADS  Article  Google Scholar 

  29. 29.

    M. Bengtsson, T. Sjöstrand, Z. Phys. C 37, 465 (1988)

    ADS  Article  Google Scholar 

  30. 30.

    M. Bengtsson, G. Ingelman, T. Sjöstrand, in Proc. of the HERA Workshop 1987, vol. 1, ed. by R.D. Peccei (DESY, Hamburg, 1988), p. 149

    Google Scholar 

  31. 31.

    J. Pumplin et al. J. High Energy Phys. 0207, 012 (2002). arXiv:hep-ph/0201195

    ADS  Article  Google Scholar 

  32. 32.

    B. Andersson, G. Gustafson, G. Ingelman, T. Sjöstrand, Phys. Rep. 97, 31 (1983)

    ADS  Article  Google Scholar 

  33. 33.

    T. Sjöstrand, Comput. Phys. Commun. 135, 74 (2001)

    Article  Google Scholar 

  34. 34.

    T. Sjöstrand, S. Mrenna, P. Skands, J. High Energy Phys. 0605, 026 (2006). arXiv:hep-ph/0603175

    ADS  Article  Google Scholar 

  35. 35.

    Z. Nagy, Z. Trocsanyi, Phys. Rev. Lett. 85, 082001 (2001). arXiv:hep-ph/0104315

    ADS  Article  Google Scholar 

  36. 36.

    W.J. Marciano, Phys. Rev. D 29, 580 (1984)

    ADS  Article  Google Scholar 

  37. 37.

    S. Bethke, Eur. Phys. J. C 64, 689 (2009). arXiv:0908.1135 [hep-ph]

    ADS  Article  Google Scholar 

  38. 38.

    L. Lönnblad, Comput. Phys. Commun. 71, 15 (1992)

    ADS  Article  Google Scholar 

  39. 39.

    I. Abt et al. (H1 Collaboration), Nucl. Instrum. Methods Phys. Res. A 386, 310 (1997)

    ADS  Article  Google Scholar 

  40. 40.

    I. Abt et al. (H1 Collaboration), Nucl. Instrum. Methods Phys. Res. A 386, 348 (1997)

    ADS  Article  Google Scholar 

  41. 41.

    R. Appuhn et al. (H1 SPACAL Group), Nucl. Instrum. Methods Phys. Res. A 386, 397 (1997)

    ADS  Article  Google Scholar 

  42. 42.

    B. Andrieu et al. (H1 Calorimeter Group), Nucl. Instrum. Methods Phys. Res. A 336, 499 (1993)

    ADS  Article  Google Scholar 

  43. 43.

    B. Andrieu et al. (H1 Calorimeter Group), Nucl. Instrum. Methods Phys. Res. A 350, 57 (1994)

    Article  Google Scholar 

  44. 44.

    M. Peez, Ph.D. thesis, DESY-THESIS-2003-023, University of Lyon, 2003, available from http://afs/desy.de/group/h1/psfiles/theses/h1th-317.ps

  45. 45.

    P. Van Esch et al. Nucl. Instrum. Methods Phys. Res. A 446, 409 (2000). arXiv:hep-ex/0001046

    ADS  Article  Google Scholar 

  46. 46.

    S. Bentvelsen et al., in Proceedings of the Workshop “Physics at HERA”, ed. by W. Buchmüller, G. Ingelman (DESY, Hamburg, 1992), p. 23

    Google Scholar 

  47. 47.

    C. Hoeger et al., in Proceedings of the Workshop “Physics at HERA”, ed. by W. Buchmüller, G. Ingelman (DESY, Hamburg, 1992), p. 43

    Google Scholar 

  48. 48.

    A. Glazov, N. Raicevic, A. Zhokin, Comput. Phys. Commun. 181, 1008 (2010)

    ADS  MATH  Article  Google Scholar 

  49. 49.

    S. Catani, Y. Dokshitzer, B. Weber, Phys. Lett. B 285, 291 (1992)

    ADS  Article  Google Scholar 

  50. 50.

    M. Cacciari, G.P. Salam, G. Soyez, Phys. Lett. B 641 (2006). arXiv:hep-ph/0512210

  51. 51.

    R. Brun, R. Hagelberg, M. Hansroul, J.C. Lassalle, CERN-DD-78-2-REV

  52. 52.

    A. Kwiatkowski, H. Spiesberger, H.J. Möhring, Comput. Phys. Commun. 69, 155 (1992)

    ADS  Article  Google Scholar 

  53. 53.

    R. Polifka, Ph.D. thesis, DESY-THESIS-2011-025, Charles University in Prague, 2011, available from http://afs/desy.de/group/h1/psfiles/theses/h1th-655.pdf

  54. 54.

    V. Blobel, arXiv:hep-ex/0208022

  55. 55.

    F.D. Aaron et al. (H1 Collaboration), Eur. Phys. J. C 66, 17 (2010). arXiv:0910.5631

    ADS  Article  Google Scholar 

  56. 56.

    K. Nowak, Ph.D. thesis, DESY-THESIS-2010-011, University of Zürich, 2009, available from http://www-h1.desy.de/psfiles/theses/h1th-520.pdf

  57. 57.

    D. Salek, Ph.D. thesis, Charles University in Prague, 2010, available from http://www-h1.desy.de/psfiles/theses/h1th-617.pdf

  58. 58.

    E. Kuraev, L. Lipatov, V. Fadin, Sov. Phys. JETP 44, 443 (1976)

    ADS  Google Scholar 

  59. 59.

    E. Kuraev, L. Lipatov, V. Fadin, Sov. Phys. JETP 45, 199 (1977)

    MathSciNet  ADS  Google Scholar 

  60. 60.

    I. Balitsky, L. Lipatov, Sov. J. Nucl. Phys. 28, 822 (1978)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Consortia

Corresponding author

Correspondence to K. Daum.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

The H1 Collaboration., Aaron, F.D., Alexa, C. et al. Measurement of dijet production in diffractive deep-inelastic scattering with a leading proton at HERA. Eur. Phys. J. C 72, 1970 (2012). https://doi.org/10.1140/epjc/s10052-012-1970-9

Download citation

Keywords

  • Differential Cross Section
  • Dijet Cross Section
  • Central Tracking Detector
  • Proton Vertex
  • Total Normalisation Error