Advertisement

Periodicity and area spectrum of black holes

  • Xiao-Xiong Zeng
  • Xian-Ming Liu
  • Wen-Biao LiuEmail author
Regular Article - Theoretical Physics

Abstract

The recent speculation of Maggiore that the periodicity of a black hole may be the origin of the area quantization law is confirmed. We exclusively utilize the period of motion of an outgoing wave, which is shown to be related to the vibrational frequency of the perturbed black hole, to quantize the horizon areas of a Schwarzschild black hole and a Kerr black hole. It is shown that the equally spaced area spectrum for both cases takes the same form and the spacing is the same as that obtained through the quasinormal mode frequencies. Particularly, for a Kerr black hole, the small angular momentum assumption, which is necessary from the perspective of quasinormal mode, is not employed as the general area spacing is reproduced.

Keywords

Black Hole Quantum Gravity High Energy Phys Quasinormal Mode Kerr Black Hole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    K.D. Kokkotas, B.G. Schmidt, Living Rev. Relativ. 2, 2 (1999) MathSciNetADSGoogle Scholar
  2. 2.
    R.A. Konoplya, A. Zhidenko, Rev. Mod. Phys. 83, 793 (2011) ADSCrossRefGoogle Scholar
  3. 3.
    S. Hod, Phys. Rev. Lett. 81, 4293 (1998) MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. 4.
    H.P. Nollert, Class. Quantum Gravity 16, R159 (1999) MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. 5.
    E.W. Leaver, Proc. R. Soc. Lond. A 402, 285 (1985) MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    G. Kunstatter, Phys. Rev. Lett. 90, 161301 (2003) MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    C.G. Wells, Stephen T.C. Siklos, Eur. J. Phys. 28, 105 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    M. Maggiore, Phys. Rev. Lett. 100, 141301 (2008) MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    G.W. Gibbons, M.J. Perry, Proc. R. Soc. Lond. A 358, 467 (1978) MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    J.D. Bekenstein, Lett. Nuovo Cimento 11, 467 (1974) ADSCrossRefGoogle Scholar
  11. 11.
    J.D. Bekenstein, Quantum black holes as atoms, arXiv:gr-qc/9710076
  12. 12.
    J.D. Bekenstein, Black holes classical properties, thermodynamics and heuristic quantization, arXiv:gr-qc/9808028
  13. 13.
    D. Christodoulou, Phys. Rev. Lett. 25, 1596 (1970) ADSCrossRefGoogle Scholar
  14. 14.
    E.C. Vagenas, J. High Energy Phys. 0811, 073 (2008) MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    A.J.M. Medved, Class. Quantum Gravity 25, 205014 (2008) MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    S.W. Wei, Y.X. Liu, K. Yang, Y. Zhong, Phys. Rev. D 81, 104042 (2010) ADSCrossRefGoogle Scholar
  17. 17.
    A. Lopez-Ortega, Class. Quantum Gravity 28, 035009 (2011) MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    W. Li, L. Xu, J. Lu, Phys. Lett. B 676, 177 (2009) MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    D.Y. Chen, H.T. Yang, X.T. Zu, Eur. Phys. J. C 69, 289 (2010) ADSCrossRefGoogle Scholar
  20. 20.
    D. Kothawala, T. Padmanabhan, S. Sarkar, Phys. Rev. D 78, 104018 (2008) MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    B.R. Majhi, Phys. Lett. B 686, 49 (2010) MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    R. Banerjee, B.R. Majhi, E.C. Vagenas, Phys. Lett. B 686, 279 (2010) ADSCrossRefGoogle Scholar
  23. 23.
    S.W. Wei, R. Li, Y.X. Liu, J.R. Ren, J. High Energy Phys. 03, 076 (2009) MathSciNetGoogle Scholar
  24. 24.
    Q.Q. Jiang, Y. Han, X. Cai, J. High Energy Phys. 1008, 049 (2010) MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    Y. Kwon, S. Nam, Class. Quantum Gravity 27, 125007 (2010) MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    Y. Kwon, S. Nam, Class. Quantum Gravity 27, 165011 (2010) MathSciNetADSCrossRefGoogle Scholar
  27. 27.
    Y. Kwon, S. Nam, Class. Quantum Gravity 28, 035007 (2011) MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    R.G. Daghigh, M.D. Green, Class. Quantum Gravity 26, 125017 (2009) MathSciNetADSCrossRefGoogle Scholar
  29. 29.
    S.W. Wei, Y.X. Liu, Area spectrum of the large ads black hole from quasinormal modes, arXiv:0906.0908 [hep-th]
  30. 30.
    R. Banerjee, B.R. Majhi, E.C. Vagenas, Phys. Lett. B 686, 279 (2010) ADSCrossRefGoogle Scholar
  31. 31.
    K. Ropotenko, Phys. Rev. D 80, 044022 (2009) MathSciNetADSCrossRefGoogle Scholar
  32. 32.
    B.R. Majhi, E.C. Vagenas, Phys. Lett. B 701, 623 (2011) ADSCrossRefGoogle Scholar
  33. 33.
    R. Kerner, R.B. Mann, Class. Quantum Gravity 25, 095014 (2008) MathSciNetADSCrossRefGoogle Scholar
  34. 34.
    T. Damora, R. Ruffini, Phys. Rev. D 14, 332 (1976) ADSCrossRefGoogle Scholar
  35. 35.
    K. Srinivasan, T. Padmanabhan, Phys. Rev. D 60, 024007 (1999) MathSciNetADSCrossRefGoogle Scholar
  36. 36.
    D.Y. Chen, Q.Q. Jiang, X.T. Zu, Phys. Lett. B 665, 106 (2008) MathSciNetADSCrossRefGoogle Scholar
  37. 37.
    S.P. Kim, J. Korean Phys. Soc. 53, 1095 (2008) ADSCrossRefGoogle Scholar
  38. 38.
    S. Hod, Phys. Rev. D 59, 024014 (1999) MathSciNetADSCrossRefGoogle Scholar
  39. 39.
    A.F. Ali, S. Das, E.C. Vagenas, Phys. Lett. B 678, 497 (2009) MathSciNetADSCrossRefGoogle Scholar
  40. 40.
    R. Banerjee, B.R. Majhi, J. High Energy Phys. 0806, 095 (2008) MathSciNetADSCrossRefGoogle Scholar
  41. 41.
    J.D. Bekenstein, V.F. Mukhanov, Phys. Lett. B 360, 7 (1995) MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2012

Authors and Affiliations

  1. 1.Department of Physics, Institute of Theoretical PhysicsBeijing Normal UniversityBeijingChina
  2. 2.Department of PhysicsHubei University for NationalitiesEnshiChina

Personalised recommendations