Minimum length–maximum velocity

Regular Article - Theoretical Physics

Abstract

We study a framework where the hypothesis of a minimum length in space-time is complemented with the notion of reference frame invariance. It turns out natural to interpret the action of the obtained reference frame transformations in the context of doubly special relativity. As a consequence of this formalism we find interesting connections between the minimum length properties and the modified velocity-energy relation for ultra-relativistic particles. For example, we can predict the ratio between the minimum lengths in space and time using the results from OPERA on superluminal neutrinos.

References

  1. 1.
    L.J. Garay, Int. J. Mod. Phys. A 10, 145–166 (1995). arXiv:gr-qc/9403008 ADSCrossRefGoogle Scholar
  2. 2.
    M. Kato, Phys. Lett. B 245, 43 (1990) ADSCrossRefGoogle Scholar
  3. 3.
    K. Konishi, G. Paffuti, P. Provero, Phys. Lett. B 234, 276 (1990) MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    A. Ashtekar, C. Rovelli, L. Smolin, Phys. Rev. Lett. 69, 237 (1992). arXiv:hep-th/9203079 MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    C. Rovelli, Nucl. Phys. B 405, 797 (1993) MathSciNetADSMATHCrossRefGoogle Scholar
  6. 6.
    M. Maggiore, Phys. Lett. B 304, 65 (1993). arXiv:hep-th/9301067 ADSCrossRefGoogle Scholar
  7. 7.
    A. Kempf, G. Mangano, Phys. Rev. D 55, 7909–7920 (1997). arXiv:hep-th/9612084 ADSCrossRefGoogle Scholar
  8. 8.
    G. Piacitelli, SIGMA 6, 073 (2010). arXiv:1004.5261 [math-ph] MathSciNetGoogle Scholar
  9. 9.
    G. Amelino-Camelia, Int. J. Mod. Phys. D 11, 35–60 (2002). arXiv:gr-qc/0012051 MathSciNetADSMATHCrossRefGoogle Scholar
  10. 10.
    K. Mimasu, S. Moretti, arXiv:1108.3280 [hep-ph]
  11. 11.
    M. Kober, Phys. Rev. D 82, 085017 (2010). arXiv:1008.0154 [physics.gen-ph] ADSCrossRefGoogle Scholar
  12. 12.
    S. Hossenfelder, Class. Quantum Gravity 25, 038003 (2008). arXiv:0712.2811 [hep-th] MathSciNetCrossRefGoogle Scholar
  13. 13.
    S. Hossenfelder, Phys. Rev. D 73, 105013 (2006). arXiv:hep-th/0603032 ADSCrossRefGoogle Scholar
  14. 14.
    A. Kempf, G. Mangano, R.B. Mann, Phys. Rev. D 52, 1108–1118 (1995). arXiv:hep-th/9412167 MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    G. Amelino-Camelia, Phys. Lett. B 510, 255–263 (2001). arXiv:hep-th/0012238 ADSMATHCrossRefGoogle Scholar
  16. 16.
    S. Hossenfelder, Class. Quantum Gravity 23, 1815–1821 (2006). arXiv:hep-th/0510245 MathSciNetADSMATHCrossRefGoogle Scholar
  17. 17.
    J. Magueijo, L. Smolin, Phys. Rev. D 67, 044017 (2003). arXiv:gr-qc/0207085 MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    J.L. Cortes, J. Gamboa, Phys. Rev. D 71, 065015 (2005). arXiv:hep-th/0405285 MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    S. Hossenfelder, Mod. Phys. Lett. A 19, 2727 (2004). arXiv:hep-ph/0410122 ADSMATHCrossRefGoogle Scholar
  20. 20.
    S. Hossenfelder, M. Bleicher, S. Hofmann, J. Ruppert, S. Scherer, H. Stoecker, Phys. Lett. B 575, 85 (2003). arXiv:hep-th/0305262 ADSMATHCrossRefGoogle Scholar
  21. 21.
    A.F. Ali, S. Das, E.C. Vagenas, arXiv:1001.2642 [hep-th]
  22. 22.
    A.F. Ali, Class. Quantum Gravity 28, 065013 (2011). arXiv:1101.4181 [hep-th] ADSCrossRefGoogle Scholar
  23. 23.
    G. Amelino-Camelia, Symmetry 2, 230 (2010). arXiv:1003.3942 [gr-qc] CrossRefGoogle Scholar
  24. 24.
    J. Magueijo, Rep. Prog. Phys. 66, 2025 (2003). arXiv:astro-ph/0305457 MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    S. Judes, M. Visser, Phys. Rev. D 68, 045001 (2003). arXiv:gr-qc/0205067 MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    S. Hossenfelder, Phys. Lett. B 649, 310–316 (2007). arXiv:gr-qc/0612167 MathSciNetADSCrossRefGoogle Scholar
  27. 27.
    D. Kimberly, J. Magueijo, J. Medeiros, Phys. Rev. D 70, 084007 (2004). arXiv:gr-qc/0303067 MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    M. Li, T. Wang, arXiv:1109.5924 [hep-ph]
  29. 29.
    R. Aloisio, P. Blasi, A. Galante et al., Lect. Notes Phys. 669, 1–30 (2005) ADSCrossRefGoogle Scholar
  30. 30.
    F.W. Stecker, Astropart. Phys. 35, 95 (2011). arXiv:1102.2784 [astro-ph] ADSCrossRefGoogle Scholar
  31. 31.
    J. Abraham et al. (Pierre Auger Collaboration), Phys. Rev. Lett. 101, 061101 (2008). arXiv:0806.4302 [astro-ph] ADSCrossRefGoogle Scholar
  32. 32.
    L. Maccione, A.M. Taylor, D.M. Mattingly, S. Liberati, J. Cosmol. Astropart. Phys. 0904, 022 (2009). arXiv:0902.1756 [astro-ph] ADSCrossRefGoogle Scholar
  33. 33.
    T. Adam et al. (OPERA Collaboration), arXiv:1109.4897 [hep-ex]
  34. 34.
    X.-J. Bi, P.-F. Yin, Z.-H. Yu, Q. Yuan, arXiv:1109.6667 [hep-ph]
  35. 35.
    M.J. Longo, Phys. Rev. D 36, 3276 (1987) ADSCrossRefGoogle Scholar
  36. 36.
    K. Hirata et al., Phys. Rev. Lett. 58, 1490 (1987) ADSCrossRefGoogle Scholar
  37. 37.
    R.M. Bionta et al., Phys. Rev. Lett. 58, 1494 (1987) ADSCrossRefGoogle Scholar
  38. 38.
    P. Adamson et al. (MINOS Collaboration), Phys. Rev. D 76, 072005 (2007). arXiv:0706.0437 [hep-ex] ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2012

Authors and Affiliations

  1. 1.II. Institute for Theoretical PhysicsUniversity of HamburgHamburgGermany

Personalised recommendations