On the possibility to measure the π0γγ decay width and the γγπ0 transition form factor with the KLOE-2 experiment

  • D. Babusci
  • H. Czyż
  • F. Gonnella
  • S. Ivashyn
  • M. Mascolo
  • R. Messi
  • D. Moricciani
  • A. Nyffeler
  • G. Venanzoni
  • KLOE-2 Collaboration
Regular Article - Theoretical Physics

Abstract

A possibility of KLOE-2 experiment to measure the width \(\varGamma_{\pi^{0} \to\gamma\gamma}\) and the π0γγ form factor F(Q2) at low invariant masses of the virtual photon in the space-like region is considered. This measurement is an important test of the strong interaction dynamics at low energies. The feasibility is estimated on the basis of a Monte-Carlo simulation. The expected accuracy for \(\varGamma_{\pi^{0} \to\gamma\gamma}\) is at a per cent level, which is better than the current experimental world average and theory. The form factor will be measured for the first time at Q2≤0.1 GeV2 in the space-like region. The impact of these measurements on the accuracy of the pion-exchange contribution to the hadronic light-by-light scattering part of the anomalous magnetic moment of the muon is also discussed.

References

  1. 1.
    S.L. Adler, Phys. Rev. 177, 2426–2438 (1969) ADSCrossRefGoogle Scholar
  2. 2.
    J.S. Bell, R. Jackiw, Nuovo Cimento A 60, 47–61 (1969) ADSCrossRefGoogle Scholar
  3. 3.
    S.L. Adler, W.A. Bardeen, Phys. Rev. 182, 1517–1536 (1969) ADSCrossRefGoogle Scholar
  4. 4.
    G. ’t Hooft, C. Itzykson, A. Jaffe, H. Lehmann, P. Mitter et al., NATO Adv.Study Inst., Ser. B, Phys. 59, 1–438 (1980) Google Scholar
  5. 5.
    K. Kampf, B. Moussallam, Phys. Rev. D 79, 076005 (2009) ADSCrossRefGoogle Scholar
  6. 6.
    J. Bijnens, K. Kampf, Nucl. Phys. B, Proc. Suppl. 207–208, 220–223 (2010) CrossRefGoogle Scholar
  7. 7.
    H. Primakoff, Phys. Rev. 81, 899 (1951) ADSCrossRefGoogle Scholar
  8. 8.
    K. Nakamura, J. Phys. G 37, 075021 (2010) ADSCrossRefGoogle Scholar
  9. 9.
    H.W. Atherton et al., Phys. Lett. B 158, 81 (1985) ADSCrossRefGoogle Scholar
  10. 10.
    I. Larin et al., Phys. Rev. Lett. 106, 162303 (2011) ADSCrossRefGoogle Scholar
  11. 11.
    M.M. Kaskulov, U. Mosel, Phys. Rev. C 84, 065206 (2011) ADSCrossRefGoogle Scholar
  12. 12.
    G. Amelino-Camelia et al., Eur. Phys. J. C 68, 619–681 (2010) ADSCrossRefGoogle Scholar
  13. 13.
    E. Abouzaid et al., Phys. Rev. Lett. 100, 182001 (2008) ADSCrossRefGoogle Scholar
  14. 14.
    H.J. Behrend et al., Z. Phys. C 49, 401–410 (1991) CrossRefGoogle Scholar
  15. 15.
    J. Gronberg et al., Phys. Rev. D 57, 33–54 (1998) ADSCrossRefGoogle Scholar
  16. 16.
    B. Aubert et al., Phys. Rev. D 80, 052002 (2009) MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    K. Melnikov, A. Vainshtein, Phys. Rev. D 70, 113006 (2004) ADSCrossRefGoogle Scholar
  18. 18.
    J. Prades, E. de Rafael, A. Vainshtein, in Lepton Dipole Moments, ed. by Lee B. Roberts, William J. Marciano. Advanced Series on Directions in High Energy Physics, vol. 20 (2009), pp. 303–317 CrossRefGoogle Scholar
  19. 19.
    A. Nyffeler, Phys. Rev. D 79, 073012 (2009) ADSCrossRefGoogle Scholar
  20. 20.
    F. Jegerlehner, A. Nyffeler, Phys. Rep. 477, 1–110 (2009) ADSCrossRefGoogle Scholar
  21. 21.
    T. Goecke, C.S. Fischer, R. Williams, Phys. Rev. D 83, 094006 (2011) ADSCrossRefGoogle Scholar
  22. 22.
    M. Davier, A. Hoecker, B. Malaescu, Z. Zhang, Eur. Phys. J. C 71, 1515 (2011) ADSCrossRefGoogle Scholar
  23. 23.
    K. Hagiwara, R. Liao, A.D. Martin, D. Nomura, T. Teubner, J. Phys. G 38, 085003 (2011) ADSCrossRefGoogle Scholar
  24. 24.
    G.W. Bennett et al., Phys. Rev. D 73, 072003 (2006) ADSCrossRefGoogle Scholar
  25. 25.
    R.M. Carey et al., FERMILAB-PROPOSAL-0989, 2009 Google Scholar
  26. 26.
    T. Mibe (J-PARC g−2 collaboration), Chin. Phys. C 34, 745 (2010) ADSCrossRefGoogle Scholar
  27. 27.
    F.E. Low, Phys. Rev. 120, 582–583 (1960) ADSCrossRefGoogle Scholar
  28. 28.
    D. Williams et al., Phys. Rev. D 38, 1365 (1988) ADSCrossRefGoogle Scholar
  29. 29.
    J. Parisi, P. Kessler, Phys. Rev. D 5, 2229–2237 (1972) ADSCrossRefGoogle Scholar
  30. 30.
    H. Terazawa, Rev. Mod. Phys. 45, 615–662 (1973) ADSCrossRefGoogle Scholar
  31. 31.
    G. Alexander et al., Nuovo Cimento A 107, 837–862 (1994) ADSCrossRefGoogle Scholar
  32. 32.
    D. Babusci et al., Nucl. Instrum. Methods Phys. Res. A 617, 81–84 (2010) ADSCrossRefGoogle Scholar
  33. 33.
    F. Archilli et al., Nucl. Instrum. Methods Phys. Res. A 617, 266–268 (2010) ADSCrossRefGoogle Scholar
  34. 34.
    H. Czyż, S. Ivashyn, Comput. Phys. Commun. 182, 1338–1349 (2011) ADSCrossRefGoogle Scholar
  35. 35.
    I. Agapov, G.A. Blair, S. Malton, L. Deacon, Nucl. Instrum. Methods Phys. Res. A 606, 708–712 (2009) ADSCrossRefGoogle Scholar
  36. 36.
    M. Adinolfi et al., Nucl. Instrum. Methods Phys. Res. A 482, 364–386 (2002) ADSCrossRefGoogle Scholar
  37. 37.
    C.M. Carloni Calame, C. Lunardini, G. Montagna, O. Nicrosini, F. Piccinini, Nucl. Phys. B 584, 459 (2000) ADSCrossRefGoogle Scholar
  38. 38.
    G. Balossini, C.M. Carloni Calame, G. Montagna, O. Nicrosini, F. Piccinini, Nucl. Phys. B 758, 227 (2006) ADSCrossRefGoogle Scholar
  39. 39.
    M. Knecht, A. Nyffeler, Eur. Phys. J. C 21, 659–678 (2001) ADSCrossRefGoogle Scholar
  40. 40.
    F. Farzanpay et al., Phys. Lett. B 278, 413–418 (1992) ADSCrossRefGoogle Scholar
  41. 41.
    R. Meijer Drees et al., Phys. Rev. D 45, 1439–1447 (1992) ADSCrossRefGoogle Scholar
  42. 42.
    G.P. Lepage, S.J. Brodsky, Phys. Lett. B 87, 359–365 (1979) ADSCrossRefGoogle Scholar
  43. 43.
    G.P. Lepage, S.J. Brodsky, Phys. Rev. D 22, 2157 (1980) ADSCrossRefGoogle Scholar
  44. 44.
    S.J. Brodsky, G.P. Lepage, Phys. Rev. D 24, 1808 (1981) ADSCrossRefGoogle Scholar
  45. 45.
    F. Jegerlehner, Acta Phys. Pol. B 38, 3021 (2007) ADSGoogle Scholar
  46. 46.
    F. Jegerlehner, The Anomalous Magnetic Moment of the Muon (Springer, Berlin, 2008) Google Scholar
  47. 47.
    L. Cappiello, O. Cata, G. D’Ambrosio, Phys. Rev. D 83, 093006 (2011) ADSCrossRefGoogle Scholar
  48. 48.
    A. Nyffeler, PoS CD09, 080 (2009) Google Scholar
  49. 49.
    J. Wess, B. Zumino, Phys. Lett. B 37, 95 (1971) MathSciNetADSGoogle Scholar
  50. 50.
    E. Witten, Nucl. Phys. B 223, 422–432 (1983) MathSciNetADSCrossRefGoogle Scholar
  51. 51.
    B.A. Li (2011). arXiv:1109.1467
  52. 52.
    A.E. Dorokhov, A.E. Radzhabov, A.S. Zhevlakov, Eur. Phys. J. C 71, 1702 (2011) ADSCrossRefGoogle Scholar
  53. 53.
    P. del Amo Sanchez et al., Phys. Rev. D 84, 052001 (2011) ADSCrossRefGoogle Scholar
  54. 54.
    P. Kroll, Eur. Phys. J. C 71, 1623 (2011) ADSCrossRefGoogle Scholar
  55. 55.
    S.J. Brodsky, F.-G. Cao, G.F. de Teramond, Phys. Rev. D 84, 075012 (2011) ADSCrossRefGoogle Scholar
  56. 56.
    A.P. Bakulev, S.V. Mikhailov, A.V. Pimikov, N.G. Stefanis, Phys. Rev. D 84, 034014 (2011) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2012

Authors and Affiliations

  • D. Babusci
    • 1
  • H. Czyż
    • 2
  • F. Gonnella
    • 3
    • 4
  • S. Ivashyn
    • 5
  • M. Mascolo
    • 3
    • 4
  • R. Messi
    • 3
    • 4
  • D. Moricciani
    • 4
  • A. Nyffeler
    • 6
  • G. Venanzoni
    • 1
  • KLOE-2 Collaboration
  1. 1.INFNLaboratori Nazionali di FrascatiFrascatiItaly
  2. 2.Institute of PhysicsUniversity of SilesiaKatowicePoland
  3. 3.Dipartimento di FisicaUniversità “Tor Vergata”RomaItaly
  4. 4.INFNSezione Roma “Tor Vergata”RomaItaly
  5. 5.A.I. Akhiezer Institute for Theoretical PhysicsNSC “Kharkiv Institute for Physics and Technology”KharkivUkraine
  6. 6.Regional Centre for Accelerator-based Particle PhysicsHarish-Chandra Research InstituteJhusiIndia

Personalised recommendations