Advertisement

An inflationary scenario taking into account of possible dark energy effects in the early universe

  • Zhe Chang
  • Ming-Hua LiEmail author
  • Xin Li
  • Sai Wang
Regular Article - Theoretical Physics

Abstract

We investigate the possible effect of cosmological-constant type dark energy during the inflation period of the early universe. This is accommodated by a new dispersion relation in de Sitter space. The modified inflation model of a minimally coupled scalar field is still able to yield an observation-compatible scale-invariant primordial spectrum, simultaneously having the potential to generate a spectrum with lower power at large scales. A qualitative match to the WMAP 7-year data is presented. We obtain an Ω Λ of the same order of that in the Λ-CDM model. Possible relations between the de Sitter scenario and Doubly Special Relativity (DSR) are also discussed.

Keywords

Dark Energy Cosmic Microwave Background Wilkinson Microwave Anisotropy Probe Cosmic Microwave Background Anisotropy Cosmic Microwave Background Photon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    N. Jarosik et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: sky maps, systematic errors, and basic results. Astrophys. J. Suppl. Ser. 192, 14 (2011) (The WMAP 7-year data is publicly available on the website http://lambda.gsfc.nasa.gov/product/map/current/m_products.cfm) ADSCrossRefGoogle Scholar
  2. 2.
    E. Komatsu et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation. Astrophys. J. Suppl. Ser. 192, 18 (2011) ADSCrossRefGoogle Scholar
  3. 3.
    A.A. Starobinsky, Spectrum of relict gravitational radiation and the early state of the universe. JETP Lett. 30, 682 (1979) [Pisma Zh. Eksp. Teor. Fiz. 30, 719 (1979)] ADSGoogle Scholar
  4. 4.
    A.A. Starobinsky, A new type of isotropic cosmological models without singularity. Phys. Lett. B 91, 99 (1980) ADSCrossRefGoogle Scholar
  5. 5.
    V.F. Mukhanov, G.V. Chibisov, Quantum fluctuation and ‘nonsingular’ universe. JETP Lett. 33, 532 (1981) [Pisma Zh. Eksp. Teor. Fiz. 33, 549 (1981)] ADSGoogle Scholar
  6. 6.
    A.H. Guth, The inflationary universe: a possible solution to the horizon and flatness problems. Phys. Rev. D 23, 347 (1981) ADSCrossRefGoogle Scholar
  7. 7.
    A.D. Linde, A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Phys. Lett. B 108, 389 (1982) MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    A.D. Linde, Coleman–Weinberg theory and a new inflationary universe scenario. Phys. Lett. B 114, 431 (1982) MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    A.D. Linde, Temperature dependence of coupling constants and the phase transition in the Coleman–Weinberg theory. Phys. Lett. B 116, 340 (1982) MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    A.D. Linde, Scalar field fluctuations in expanding universe and the new inflationary universe scenario. Phys. Lett. B 116, 335 (1982) MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    A. Albrecht, P.J. Steinhardt, Cosmology for grand unified theories with radiatively induced symmetry breaking. Phys. Rev. Lett. 48, 1220 (1982) ADSCrossRefGoogle Scholar
  12. 12.
    S.W. Hawking, The development of irregularities in a single bubble inflationary universe. Phys. Lett. B 115, 295 (1982) ADSCrossRefGoogle Scholar
  13. 13.
    A.A. Starobinsky, Dynamics of phase transition in the new inflationary universe scenario and generation of perturbations. Phys. Lett. B 117, 175 (1982) ADSCrossRefGoogle Scholar
  14. 14.
    A.H. Guth, S.Y. Pi, Fluctuations in the new inflationary universe. Phys. Rev. Lett. 49, 1110 (1982) ADSCrossRefGoogle Scholar
  15. 15.
    J.M. Bardeen, P.J. Steinhardt, M.S. Turner, Spontaneous creation of almost scale-free density perturbations in an inflationary universe. Phys. Rev. D 28, 679 (1983) ADSCrossRefGoogle Scholar
  16. 16.
    V.F. Mukhanov, Gravitational instability of the universe filled with a scalar field. JETP Lett. 41, 493 (1985) [Pisma Zh. Eksp. Teor. Fiz. 41, 402 (1985)] ADSGoogle Scholar
  17. 17.
    V.F. Mukhanov, H.A. Feldman, R.H. Brandenberger, Theory of cosmological perturbations. Phys. Rep. 215, 203 (1992) MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    V.F. Mukhanov, Physical Foundations of Cosmology (Cambridge University Press, Cambridge, 2008) Google Scholar
  19. 19.
    H. Kurki-Suonio, Physics of the cosmic microwave background and the Planck mission, in Proceedings of the 2010 CERN Summer School, Raseborg (Finland), submitted for publication in a CERN Yellow Report (2010). arXiv:1012.5204v1
  20. 20.
    D. Larson et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Power spectra and WMAP-derived parameters. Astrophys. J. Suppl. Ser. 192, 16 (2011) ADSCrossRefGoogle Scholar
  21. 21.
    J.M. Cline, P. Crotty, J. Lesgourgues, Does the small CMB quadrupole moment suggest new physics? J. Cosmol. Astropart. Phys. 9 (2003) Google Scholar
  22. 22.
    G. Efstathiou, Is the low CMB quadrupole a signature of spatial curvature? Mon. Not. R. Astron. Soc. 343, L95 (2003). arXiv:astro-ph/0303127 ADSCrossRefGoogle Scholar
  23. 23.
    H. Liu, S.-L. Xiong, T.-P. Li, The origin of the WMAP quadrupole (2010). arXiv:1003.1073v2
  24. 24.
    H. Liu, T.-P. Li, Observational scan induced artificial CMB anisotropy. Astrophys. J. (2011, to be published). arXiv:1003.1073v2
  25. 25.
    M. Kawasaki, F. Takahashi, Inflation model with lower multipoles of the CMB suppressed. Phys. Lett. B 570, 151 (2003) ADSCrossRefGoogle Scholar
  26. 26.
    B. Feng, X.-M. Zhang, Double inflation and the low CMB quadrupole. Phys. Lett. B 570, 145 (2003) ADSCrossRefGoogle Scholar
  27. 27.
    C.R. Contaldi et al., Suppressing the lower multipoles in the CMB anisotropies. J. Cosmol. Astropart. Phys. 9 (2003) Google Scholar
  28. 28.
    Y.-S. Piao, Possible explanation to a low CMB quadrupole. Phys. Rev. D 71, 087301 (2005) ADSCrossRefGoogle Scholar
  29. 29.
    L. Kofman, G.R. Blumenthal, H. Hodges, J.R. Primack, Generation of nonflat and nongaussian perturbations from inflation. ASP Conf. Ser. 15, 339 (1991) ADSGoogle Scholar
  30. 30.
    H.M. Hodges, G.R. Blumenthal, L.A. Kofman, J.R. Primack, Nonstandard primordial fluctuations from a polynomial inflaton potential. Nucl. Phys. B 335, 197 (1990) ADSCrossRefGoogle Scholar
  31. 31.
    D.C. Rodrigues, Anisotropic cosmological constant and the CMB quadrupole anomaly. Phys. Rev. D 77, 023534 (2008) ADSCrossRefGoogle Scholar
  32. 32.
    C.J. Copi, Large-angle anomalies in the CMB. Adv. Astron. 2010, 847541 (2010) CrossRefGoogle Scholar
  33. 33.
    C.L. Bennett et al., Seven-year Wilkinson Microwave Anisotropy Probe (Wmap) observations: Are there cosmic microwave background anomalies? Astrophys. J. Suppl. Ser. 192, 17 (2011) ADSCrossRefGoogle Scholar
  34. 34.
    R.H. Brandenberger, P.M. Ho, Noncommutative spacetime, stringy spacetime uncertainty principle, and density fluctuations. Phys. Rev. D 66, 023517 (2002). arXiv:hep-th/0203119 MathSciNetADSCrossRefGoogle Scholar
  35. 35.
    R.H. Brandenberger, Trans-Planckian physics and inflationary cosmology, in Proceedings of the 2002 International Symposium on Cosmology and Particle Astrophysics. vol. 101 (2003). arXiv:hep-th/0210186v2 Google Scholar
  36. 36.
    J. Martin, R.H. Brandenberger, Trans-Planckian problem of inflationary cosmology. Phys. Rev. D 63, 123501 (2001) ADSCrossRefGoogle Scholar
  37. 37.
    P.J.E. Peebles, B. Ratra, The cosmological constant and dark energy. Rev. Mod. Phys. 75, 559 (2003). arXiv:astro-ph/0207347v2 MathSciNetADSzbMATHCrossRefGoogle Scholar
  38. 38.
    Z. Chang, S.-X. Chen, C.-B. Guan, Cosmic ray threshold anomaly and kinematics in the dS spacetime (2004). arXiv:astro-ph/0402351v1
  39. 39.
    Z. Chang, S.-X. Chen, C.-B. Guan, C.-G. Huang, Cosmic ray threshold in an asymptotically DS spacetime. Phys. Rev. D 71, 103007 (2005). arXiv:astro-ph/0505612v1 ADSCrossRefGoogle Scholar
  40. 40.
    H.-Y. Guo, C.-G. Huang, Z. Xu, B. Zhou, On Beltrami model of de Sitter spacetime. Mod. Phys. Lett. A 19, 1701 (2004) MathSciNetADSzbMATHCrossRefGoogle Scholar
  41. 41.
    A. Riotto, Inflation and the theory of cosmological perturbations. Lectures given at the: Summer School on Astroparticle Physics and Cosmology (2002). arXiv:hep-ph/0210162v1
  42. 42.
    S. Dodelson, Modern Cosmology (Elsevier, Singapore, 2003) Google Scholar
  43. 43.
    C.-P. Ma, E. Bertschinger, Cosmological perturbation-theory in the synchronous and conformal Newtonian gauges. Astrophys. J. 455, 7 (1995). arXiv:astro-ph/9506072v1 ADSCrossRefGoogle Scholar
  44. 44.
    U. Seljak, M. Zaldarriaga, A line of sight approach to cosmic microwave background anisotropies. Astrophys. J. 469, 437 (1996). arXiv:astro-ph/9603033 ADSCrossRefGoogle Scholar
  45. 45.
    M. Bucher, K. Moodley, N. Turok, The general primordial cosmic perturbation. Phys. Rev. D 62, 083508 (2000) ADSCrossRefGoogle Scholar
  46. 46.
    A. Lewis, A. Challinor, Code for anisotropies in the microwave background (CAMB) (2011). http://camb.info/ (This code is based on CMBFAST by U. Seljak and M. Zaldarriaga (1996). http://lambda.gsfc.nasa.gov/toolbox/tb_cmbfast_ov.cfm
  47. 47.
    O. Lahav, A. Liddle, The cosmological parameters. Appearing in the 2010 Review of Particle Physics, available on the PDG website at http://pdg.lbl.gov/2011/astrophysics-cosmology/astro-cosmo.html or http://pdg.lbl.gov/2011/reviews/rpp2011-rev-cosmic-microwave-background.pdf
  48. 48.
    C.L. Bennett et al., Four-year COBE* DMR cosmic microwave background observations: maps and basic results. Astrophys. J. Lett. 464 (1996) Google Scholar
  49. 49.
    C.B. Netterfield et al., A measurement by BOOMERANG of multiple peaks in the angular power spectrum of the cosmic microwave background. Astrophys. J. 571, 604 (2002). arXiv:astro-ph/0104460 ADSCrossRefGoogle Scholar
  50. 50.
    S. Hanany et al., MAXIMA-1: A measurement of the cosmic microwave background anisotropy on angular scales of 10 arcminutes to 5 degrees. Astrophys. J. 545, L5 (2000). arXiv:astro-ph/0005123 ADSCrossRefGoogle Scholar
  51. 51.
    N.W. Halverson et al., DASI first results: a measurement of the cosmic microwave background angular power spectrum. Astrophys. J. 568, 38 (2002). arXiv:astro-ph/0104489 ADSCrossRefGoogle Scholar
  52. 52.
    P.F. Scott et al., First results from the very small array—III. The CMB power spectrum. Mon. Not. R. Astron. Soc. 341, 1076 (2003). arXiv:astro-ph/0205380 ADSCrossRefGoogle Scholar
  53. 53.
    T.J. Pearson et al., The anisotropy of the microwave background to =3500: mosaic observations with the Cosmic Background Imager. Astrophys. J. 591, 556 (2003). arXiv:astro-ph/0205388 ADSCrossRefGoogle Scholar
  54. 54.
    CBI Supplementary Data, 10 July 2002. http://www.astro.caltech.edu/~tjp/CBI/data/
  55. 55.
    A. Lewis, S. Bridle, Cosmological parameters from CMB and other data: A Monte-Carlo approach. Phys. Rev. D 66, 103511 (2002). arXiv:astro-ph/0205436 ADSCrossRefGoogle Scholar
  56. 56.
    H.Y. Guo, Special relativity and theory of gravity via maximum symmetry and localization. Sci. China Ser. A 51, 568 (2008). doi: 10.1007/s11425-007-0166-5 MathSciNetzbMATHCrossRefGoogle Scholar
  57. 57.
    G. Amelino-Camelia, Relativity in space-times with short-distance structure governed by an observer-independent (Planckian) length scale. Int. J. Mod. Phys. D 11, 35 (2002). arXiv:gr-qc/0012051 MathSciNetADSzbMATHCrossRefGoogle Scholar
  58. 58.
    G. Amelino-Camelia, Testable scenario for relativity with minimum-length. Phys. Lett. B 510, 255 (2001). arXiv:hep-th/0012238 ADSzbMATHCrossRefGoogle Scholar
  59. 59.
    G. Amelino-Camelia, Doubly special relativity. Nature 418, 34 (2002). arXiv:gr-qc/0207049 ADSCrossRefGoogle Scholar
  60. 60.
    J. Kowalski-Glikman, De sitter space as an arena for doubly special relativity. Phys. Lett. B 547, 291 (2002) MathSciNetADSzbMATHCrossRefGoogle Scholar
  61. 61.
    J. Kowalski-Glikman, Introduction to doubly special relativity. Lect. Notes Phys. 669, 131 (2005) ADSCrossRefGoogle Scholar
  62. 62.
    H.Y. Guo et al., Snyder’s model—de Sitter special relativity duality and de Sitter gravity. Class. Quantum Gravity 24, 4009 (2007) ADSzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2012

Authors and Affiliations

  1. 1.Institute of High Energy PhysicsChinese Academy of SciencesBeijingChina
  2. 2.Theoretical Physics Center for Science FacilitiesChinese Academy of SciencesBeijingChina

Personalised recommendations