Advertisement

Constraints on the MSSM from the Higgs sector

A pMSSM study of Higgs searches, \(B^{0}_{s} \to \mu^{+} \mu^{-}\) and dark matter direct detection
  • A. Arbey
  • M. BattagliaEmail author
  • F. Mahmoudi
Regular Article - Theoretical Physics

Abstract

We discuss the constraints on supersymmetry in the Higgs sector arising from LHC searches, rare B decays and dark matter direct detection experiments. We show that constraints derived on the mass of the lightest h 0 and the CP-odd A 0 bosons from these searches are covering a larger fraction of the SUSY parameter space compared to searches for strongly interacting supersymmetric particle partners. We discuss the implications of a mass determination for the lightest Higgs boson in the range 123<M h <127 GeV, inspired by the intriguing hints reported by the ATLAS and CMS Collaborations, as well as those of a non-observation of the lightest Higgs boson for MSSM scenarios not excluded at the end of 2012 by LHC and direct dark matter searches and their implications on LHC SUSY searches.

Keywords

Dark Matter Higgs Boson Higgs Mass Atlas Collaboration Higgs Sector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S. Chatrchyan et al. (CMS Collaboration), Phys. Rev. Lett. 107, 221804 (2011). arXiv:1109.2352 ADSCrossRefGoogle Scholar
  2. 2.
    G. Aad et al. (ATLAS Collaboration), arXiv:1109.6572 (2011)
  3. 3.
    G. Aad et al. (ATLAS Collaboration), arXiv:1110.6189 (2011)
  4. 4.
    CMS Collaboration, CMS-PAS-SUS-11-010 (2011) Google Scholar
  5. 5.
    CMS Collaboration, CMS-PAS-SUS-11-011 (2011) Google Scholar
  6. 6.
    J.A. Conley, J.S. Gainer, J.L. Hewett et al., arXiv:1103.1697 (2011)
  7. 7.
    S. Sekmen, S. Kraml, J. Lykken et al., arXiv:1109.5119 (2011)
  8. 8.
    A. Arbey, M. Battaglia, F. Mahmoudi, Eur. Phys. J. C 72, 1847 (2012). arXiv:1110.3726 ADSCrossRefGoogle Scholar
  9. 9.
    M. Perelstein, C. Spethmann, J. High Energy Phys. 04, 070 (2007). arXiv:hep-ph/0702038 ADSCrossRefGoogle Scholar
  10. 10.
    F. Gianotti, G. Tonelli, Talks given at the CERN seminar on update on the Standard Model Higgs searches, CERN, 13/12/2011. https://indico.cern.ch/conferenceDisplay.py?confId=164890
  11. 11.
    ATLAS Collaboration, CERN-PH-EP-2012-019 and arXiv:1202.1408 [hep-ex] (2012)
  12. 12.
    CMS Collaboration, CERN-PH-EP-2012-023 and arXiv:1202.1488 [hep-ex] (2012)
  13. 13.
    A. Djouadi et al., arXiv:hep-ph/9901246 (1998)
  14. 14.
    M.S. Carena, M. Quiros, C.E.M. Wagner, Nucl. Phys. B 461, 407 (1996). arXiv:hep-ph/9508343 ADSCrossRefGoogle Scholar
  15. 15.
    S. Heinemeyer, W. Hollik, G. Weiglein, Phys. Lett. B 440, 296 (1998). arXiv:hep-ph/9807423 ADSCrossRefGoogle Scholar
  16. 16.
    M.S. Carena et al., Nucl. Phys. B 580, 29 (2000). arXiv:hep-ph/0001002 ADSCrossRefGoogle Scholar
  17. 17.
    A. Arbey, M. Battaglia, A. Djouadi et al., Phys. Lett. B 708, 162 (2012). arXiv:1112.3028 ADSCrossRefGoogle Scholar
  18. 18.
    M.S. Carena, S. Heinemeyer, C.E.M. Wagner et al., Eur. Phys. J. C 26, 601 (2003). arXiv:hep-ph/0202167 ADSCrossRefGoogle Scholar
  19. 19.
    B.C. Allanach, Comput. Phys. Commun. 143, 305 (2002). arXiv:hep-ph/0104145 ADSzbMATHCrossRefGoogle Scholar
  20. 20.
    A. Djouadi, J. Kalinowski, M. Spira, Comput. Phys. Commun. 108, 56 (1998). arXiv:hep-ph/9704448 ADSzbMATHCrossRefGoogle Scholar
  21. 21.
    S. Heinemeyer, W. Hollik, G. Weiglein, Comput. Phys. Commun. 124, 76 (2000). arXiv:hep-ph/9812320 ADSzbMATHCrossRefGoogle Scholar
  22. 22.
    S. Heinemeyer, W. Hollik, G. Weiglein, Eur. Phys. J. C 9, 343 (1999). arXiv:hep-ph/9812472 ADSGoogle Scholar
  23. 23.
    M. Muhlleitner, A. Djouadi, Y. Mambrini, Comput. Phys. Commun. 168, 46 (2005). arXiv:hep-ph/0311167 ADSCrossRefGoogle Scholar
  24. 24.
    F. Mahmoudi, Comput. Phys. Commun. 178, 745 (2008). arXiv:0710.2067 ADSzbMATHCrossRefGoogle Scholar
  25. 25.
    F. Mahmoudi, Comput. Phys. Commun. 180, 1579 (2009). arXiv:0808.3144 ADSCrossRefGoogle Scholar
  26. 26.
    A. Arbey, F. Mahmoudi, Comput. Phys. Commun. 181, 1277 (2010). arXiv:0906.0369 ADSzbMATHCrossRefGoogle Scholar
  27. 27.
    G. Belanger, F. Boudjema, A. Pukhov et al., Comput. Phys. Commun. 180, 747 (2009). arXiv:0803.2360 ADSzbMATHCrossRefGoogle Scholar
  28. 28.
    M. Spira, A. Djouadi, D. Graudenz et al., Nucl. Phys. B 453, 17 (1995). arXiv:hep-ph/9504378 ADSCrossRefGoogle Scholar
  29. 29.
    M. Spira, Nucl. Instrum. Methods A 389, 357 (1997). arXiv:hep-ph/9610350 ADSCrossRefGoogle Scholar
  30. 30.
    G. Passarino, C. Sturm, S. Uccirati, Phys. Lett. B 655, 298 (2007). arXiv:0707.1401 ADSCrossRefGoogle Scholar
  31. 31.
    A. Djouadi, V. Driesen, W. Hollik et al., Eur. Phys. J. C 1, 149 (1998). arXiv:hep-ph/9612362 ADSGoogle Scholar
  32. 32.
    A. Djouadi, Phys. Lett. B 435, 101 (1998). arXiv:hep-ph/9806315 ADSCrossRefGoogle Scholar
  33. 33.
    A. Djouadi, Phys. Rep. 459, 1 (2008). arXiv:hep-ph/0503173 ADSCrossRefGoogle Scholar
  34. 34.
    A. Djouadi, Phys. Rep. 457, 1 (2008). arXiv:hep-ph/0503172 ADSCrossRefGoogle Scholar
  35. 35.
    E. Boos, A. Djouadi, M. Muhlleitner et al., Phys. Rev. D 66, 055004 (2002). arXiv:hep-ph/0205160 ADSCrossRefGoogle Scholar
  36. 36.
    A. Djouadi, M. Drees, P. Fileviez Perez et al., Phys. Rev. D 65, 075016 (2002). arXiv:hep-ph/0109283 ADSCrossRefGoogle Scholar
  37. 37.
    D. Cavalli, A. Djouadi, K. Jakobs et al., arXiv:hep-ph/0203056 (2002)
  38. 38.
    R. Kinnunen, S. Lehti, A. Nikitenko et al., J. Phys. G 31, 71 (2005). arXiv:hep-ph/0503067 ADSCrossRefGoogle Scholar
  39. 39.
    D. Vasquez, G. Belanger, R. Godbole et al., arXiv:1112.2200 (2011)
  40. 40.
    A. Arbey, M. Battaglia, F. Mahmoudi, in preparation Google Scholar
  41. 41.
    A. Djouadi, Mod. Phys. Lett. A 14, 359 (1999). arXiv:hep-ph/9903382 ADSCrossRefGoogle Scholar
  42. 42.
    G. Aad et al. (ATLAS), Phys. Rev. Lett. 108, 041805 (2012). arXiv:1109.4725 ADSCrossRefGoogle Scholar
  43. 43.
    M. Papucci, J.T. Ruderman, A. Weiler, arXiv:1110.6926 (2011)
  44. 44.
    S. Chatrchyan et al. (CMS Collaboration), Phys. Rev. Lett. 106, 231801 (2011). arXiv:1104.1619 ADSCrossRefGoogle Scholar
  45. 45.
    CMS Collaboration, CMS-PAS HIG-11-009 (2011) Google Scholar
  46. 46.
    A. Akeroyd, F. Mahmoudi, D. Martinez Santos, J. High Energy Phys. 1112, 088 (2011). arXiv:1108.3018 ADSCrossRefGoogle Scholar
  47. 47.
    T. Aaltonen, B. Álvarez González, S. Amerio et al. (CDF Collaboration), Phys. Rev. Lett. 107, 191801 (2011) ADSCrossRefGoogle Scholar
  48. 48.
    CMS and LHCb Collaborations, LHCb-CONF-2011-047, CMS-PAS-BPH-11-019 (2011) Google Scholar
  49. 49.
    Z. Ahmed et al. (The CDMS-II Collaboration), Science 327, 1619 (2010). arXiv:0912.3592 ADSCrossRefGoogle Scholar
  50. 50.
    E. Aprile et al. (XENON 100 Collaboration), Phys. Rev. Lett. (2011). arXiv:1104.2549
  51. 51.
    G. Jungman, M. Kamionkowski, K. Griest, Phys. Rep. 267, 195 (1996). arXiv:hep-ph/9506380 ADSCrossRefGoogle Scholar
  52. 52.
    ATLAS and CMS Collaborations, ATLAS-CONF-2011-157, CMS-PAS-HIG-11-023 (2011) Google Scholar
  53. 53.
    G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 705, 435 (2011). arXiv:1109.5945 ADSCrossRefGoogle Scholar
  54. 54.
    CMS Collaboration, CMS-PAS-HIG-11-015 (2011) Google Scholar
  55. 55.
    ATLAS Collaboration, ATLAS-CONF-2011-098 (2011) Google Scholar
  56. 56.
    CMS Collaboration, CMS-PAS-SUS-11-006 (2011) Google Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2012

Authors and Affiliations

  1. 1.Université de Lyon, Université Lyon 1, CNRS/IN2P3, UMR 5822 IPNLVilleurbanne CedexFrance
  2. 2.CERNGeneva 23Switzerland
  3. 3.Observatoire de Lyon, CNRS, UMR 5574CRAL Ecole Normale Supérieure de LyonSaint-Genis Laval CedexFrance
  4. 4.Santa Cruz Institute of Particle PhysicsUniversity of CaliforniaSanta CruzUSA
  5. 5.Lawrence Berkeley National LaboratoryBerkeleyUSA
  6. 6.Clermont Université, Université Blaise Pascal, CNRS/IN2P3, LPCClermont-FerrandFrance

Personalised recommendations