Advertisement

SUSY background to neutral MSSM Higgs boson searches

  • B. FeiglEmail author
  • H. Rzehak
  • D. Zeppenfeld
Regular Article - Theoretical Physics

Abstract

Within the Minimal Supersymmetric Standard Model (MSSM) the production and decay of superpartners can give rise to backgrounds for Higgs boson searches. Here MSSM background processes to the vector boson fusion channel with the Higgs boson decaying into two tau leptons or two W-bosons are investigated, giving rise to dilepton plus missing transverse momentum signals of the Higgs boson. Starting from a scenario with relatively small masses of the supersymmetric (SUSY) particles, with concomitant large cross section of the background processes, one obtains a first conservative estimate of the background. Light chargino pair production plus two jets, lightest and next-to-lightest neutralino production plus two jets as well as slepton pair production plus two jets are identified as important contributions to the irreducible SUSY background. Light chargino and next-to-lightest neutralino production plus two jets and next-to-lightest neutralino pair production plus two jets give rise to reducible backgrounds, which can be larger than the irreducible ones in some scenarios. The relevant distributions are shown and additional cuts for MSSM background reduction are discussed. Extrapolation to larger squark masses is performed and shows that MSSM backgrounds are quite small for squark masses at the current exclusion limits.

Keywords

Higgs Boson Transverse Momentum Minimal Supersymmetric Standard Model Light Neutralino Gluino Masse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    G.L. Bayatian et al. (CMS Collaboration), J. Phys. G, Nucl. Part. Phys. 34, 995–1579 (2007) ADSCrossRefGoogle Scholar
  2. 2.
    G. Aad et al. (The ATLAS Collaboration), arXiv:0901.0512 [hep-ex]
  3. 3.
    T. Plehn, D.L. Rainwater, D. Zeppenfeld, Phys. Lett. B 454, 297–303 (1999). arXiv:hep-ph/9902434 ADSCrossRefGoogle Scholar
  4. 4.
    A. Datta, A. Djouadi, M. Guchait, F. Moortgat, Nucl. Phys. B 681, 31–64 (2004). arXiv:hep-ph/0303095 ADSCrossRefGoogle Scholar
  5. 5.
    M. Consonni, Nucl. Phys. B, Proc. Suppl. 177–178, 271–272 (2008) CrossRefGoogle Scholar
  6. 6.
    H. Baer, V. Barger, G. Shaughnessy, Phys. Rev. D, Part. Fields 78, 095009 (2008). arXiv:0806.3745 [hep-ph] ADSCrossRefGoogle Scholar
  7. 7.
    ATLAS Collaboration, Phys. Lett. B 705, 174–192 (2011). arXiv:1107.5003 [hep-ex] ADSCrossRefGoogle Scholar
  8. 8.
    S. Chatrchyan et al. (CMS Collaboration), Phys. Rev. Lett. 106, 231801 (2011). arXiv:1104.1619 [hep-ex] ADSCrossRefGoogle Scholar
  9. 9.
    CMS Collaboration, CMS-PAS-HIG-11-009 (2011) Google Scholar
  10. 10.
    M. Duhrssen, S. Heinemeyer, H. Logan, D. Rainwater, G. Weiglein, D. Zeppenfeld, Phys. Rev. D, Part. Fields 70, 113009 (2004). arXiv:hep-ph/0406323 ADSCrossRefGoogle Scholar
  11. 11.
    G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 701, 186–203 (2011). arXiv:1102.5290 [hep-ex] ADSCrossRefGoogle Scholar
  12. 12.
    G. Aad et al. (ATLAS Collaboration), Eur. Phys. J. C 71, 1682 (2011). arXiv:1103.6214 [hep-ex] ADSCrossRefGoogle Scholar
  13. 13.
    I. Vivarelli (ATLAS Collaboration), talk given at EPS HEP 2011, Grenoble, France Google Scholar
  14. 14.
    S. Chatrchyan et al. (CMS Collaboration), J. High Energy Phys. 1106, 026 (2011). arXiv:1103.1348 [hep-ex] ADSCrossRefGoogle Scholar
  15. 15.
    S. Chatrchyan et al. (CMS Collaboration), J. High Energy Phys. 1108, 155 (2011). arXiv:1106.4503 [hep-ex] ADSCrossRefGoogle Scholar
  16. 16.
    CMS Collaboration, CMS-PAS-SUS-11-003 (2011) Google Scholar
  17. 17.
    T. Han, G. Valencia, S. Willenbrock, Phys. Rev. Lett. 69, 3274–3277 (1992). arXiv:hep-ph/9206246 ADSCrossRefGoogle Scholar
  18. 18.
    M. Spira, Fortschr. Phys. 46, 203–284 (1998). arXiv:hep-ph/9705337 zbMATHCrossRefGoogle Scholar
  19. 19.
    T. Figy, C. Oleari, D. Zeppenfeld, Phys. Rev. D, Part. Fields 68, 073005 (2003). arXiv:hep-ph/0306109 ADSCrossRefGoogle Scholar
  20. 20.
    E.L. Berger, J.M. Campbell, Phys. Rev. D, Part. Fields 70, 073011 (2004). arXiv:hep-ph/0403194 ADSCrossRefGoogle Scholar
  21. 21.
    M. Ciccolini, A. Denner, S. Dittmaier, Phys. Rev. Lett. 99, 161803 (2007). arXiv:0707.0381 [hep-ph] ADSCrossRefGoogle Scholar
  22. 22.
    M. Ciccolini, A. Denner, S. Dittmaier, Phys. Rev. D, Part. Fields 77, 013002 (2008). arXiv:0710.4749 [hep-ph] ADSCrossRefGoogle Scholar
  23. 23.
    T. Figy, S. Palmer, G. Weiglein, J. High Energy Phys. 1202, 105 (2012). arXiv:1012.4789 [hep-ph] ADSCrossRefGoogle Scholar
  24. 24.
    R.V. Harlander, J. Vollinga, M.M. Weber, Phys. Rev. D, Part. Fields 77, 053010 (2008). arXiv:0801.3355 [hep-ph] ADSCrossRefGoogle Scholar
  25. 25.
    A. Bredenstein, K. Hagiwara, B. Jager, Phys. Rev. D, Part. Fields 77, 073004 (2008). arXiv:0801.4231 [hep-ph] ADSCrossRefGoogle Scholar
  26. 26.
    J. Andersen, T. Binoth, G. Heinrich, J. Smillie, J. High Energy Phys. 0802, 057 (2008). arXiv:0709.3513 [hep-ph] ADSCrossRefGoogle Scholar
  27. 27.
    P. Bolzoni, F. Maltoni, S.-O. Moch, M. Zaro, Phys. Rev. Lett. 105, 011801 (2010). arXiv:1003.4451 [hep-ph] ADSCrossRefGoogle Scholar
  28. 28.
    A. Djouadi, M. Spira, Phys. Rev. D, Part. Fields 62, 014004 (2000). arXiv:hep-ph/9912476 ADSCrossRefGoogle Scholar
  29. 29.
    W. Hollik, T. Plehn, M. Rauch, H. Rzehak, Phys. Rev. Lett. 102, 091802 (2009). arXiv:0804.2676 [hep-ph] ADSCrossRefGoogle Scholar
  30. 30.
    B.C. Allanach et al., Eur. Phys. J. C 25, 113–123 (2002). arXiv:hep-ph/0202233 ADSCrossRefGoogle Scholar
  31. 31.
    M.S. Carena, S. Heinemeyer, C.E.M. Wagner, G. Weiglein, arXiv:hep-ph/9912223
  32. 32.
    D.L. Rainwater, D. Zeppenfeld, K. Hagiwara, Phys. Rev. D, Part. Fields 59, 014037 (1998). arXiv:hep-ph/9808468 ADSCrossRefGoogle Scholar
  33. 33.
    N. Kauer, T. Plehn, D.L. Rainwater, D. Zeppenfeld, Phys. Lett. B 503, 113–120 (2001). arXiv:hep-ph/0012351 ADSCrossRefGoogle Scholar
  34. 34.
    A. Djouadi, M.M. Muhlleitner, M. Spira, Acta Phys. Pol. B 38, 635–644 (2007). arXiv:hep-ph/0609292 ADSGoogle Scholar
  35. 35.
    M. Muhlleitner, A. Djouadi, Y. Mambrini, Comput. Phys. Commun. 168, 46–70 (2005). arXiv:hep-ph/0311167 ADSCrossRefGoogle Scholar
  36. 36.
    A. Djouadi, J.-L. Kneur, G. Moultaka, Comput. Phys. Commun. 176, 426–455 (2007). arXiv:hep-ph/0211331 ADSzbMATHCrossRefGoogle Scholar
  37. 37.
    A. Djouadi, J. Kalinowski, M. Spira, Comput. Phys. Commun. 108, 56–74 (1998). arXiv:hep-ph/9704448 ADSzbMATHCrossRefGoogle Scholar
  38. 38.
    W. Porod, Comput. Phys. Commun. 153, 275–315 (2003). arXiv:hep-ph/0301101 ADSCrossRefGoogle Scholar
  39. 39.
    S. Heinemeyer, W. Hollik, G. Weiglein, Comput. Phys. Commun. 124, 76–89 (2000). arXiv:hep-ph/9812320 ADSzbMATHCrossRefGoogle Scholar
  40. 40.
    S. Heinemeyer, W. Hollik, G. Weiglein, Eur. Phys. J. C 9, 343–366 (1999). arXiv:hep-ph/9812472 ADSGoogle Scholar
  41. 41.
    G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich, G. Weiglein, Eur. Phys. J. C 28, 133–143 (2003). arXiv:hep-ph/0212020 ADSCrossRefGoogle Scholar
  42. 42.
    M. Frank, T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak, G. Weiglein, J. High Energy Phys. 0702, 047 (2007). arXiv:hep-ph/0611326 ADSCrossRefGoogle Scholar
  43. 43.
    P.Z. Skands et al., J. High Energy Phys. 0407, 036 (2004). arXiv:hep-ph/0311123 ADSCrossRefGoogle Scholar
  44. 44.
    B.C. Allanach et al., Comput. Phys. Commun. 180, 8–25 (2009). arXiv:0801.0045 [hep-ph] ADSCrossRefGoogle Scholar
  45. 45.
    E. Brubaker et al. (Tevatron Electroweak Working Group, CDF and D0 Collaboration), arXiv:hep-ex/0603039
  46. 46.
    J. Alwall et al., J. High Energy Phys. 0709, 028 (2007). arXiv:0706.2334 [hep-ph] ADSCrossRefGoogle Scholar
  47. 47.
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, T. Stelzer, J. High Energy Phys. 1106, 128 (2011). arXiv:1106.0522 [hep-ph] ADSCrossRefGoogle Scholar
  48. 48.
    J. Pumplin et al., J. High Energy Phys. 0207, 012 (2002). arXiv:hep-ph/0201195 ADSCrossRefGoogle Scholar
  49. 49.
    W. Kilian, T. Ohl, J. Reuter, Eur. Phys. J. C 71, 1742 (2011). arXiv:0708.4233 [hep-ph] ADSCrossRefGoogle Scholar
  50. 50.
    M. Moretti, T. Ohl, J. Reuter, arXiv:hep-ph/0102195 [hep-ph]
  51. 51.
    W. Beenakker, R. Hopker, M. Spira, P. Zerwas, Nucl. Phys. B 492, 51–103 (1997). arXiv:hep-ph/9610490 [hep-ph] ADSGoogle Scholar
  52. 52.
    W. Beenakker, M. Klasen, M. Kramer, T. Plehn, M. Spira et al., Phys. Rev. Lett. 83, 3780–3783 (1999). arXiv:hep-ph/9906298 [hep-ph] ADSCrossRefGoogle Scholar
  53. 53.
    M. Bahr et al., Eur. Phys. J. C 58, 639–707 (2008). arXiv:0803.0883 [hep-ph] ADSCrossRefGoogle Scholar
  54. 54.
    J. Alwall et al., Comput. Phys. Commun. 176, 300–304 (2007). arXiv:hep-ph/0609017 ADSCrossRefGoogle Scholar
  55. 55.
    P. Richardson, J. High Energy Phys. 0111, 029 (2001). arXiv:hep-ph/0110108 ADSCrossRefGoogle Scholar
  56. 56.
    K. Arnold et al., Comput. Phys. Commun. 180, 1661–1670 (2009). arXiv:0811.4559 [hep-ph] ADSCrossRefGoogle Scholar
  57. 57.
    K. Arnold et al., arXiv:1107.4038 [hep-ph]
  58. 58.
    D.W. Miller (ATLAS Collaboration), ATL-PHYS-PROC-2010-049 (2010) Google Scholar
  59. 59.
    G. Aad et al. (ATLAS Collaboration), New J. Phys. 13, 053033 (2011). arXiv:1012.5104 [hep-ex] ADSCrossRefGoogle Scholar
  60. 60.
    D.L. Rainwater, D. Zeppenfeld, Phys. Rev. D, Part. Fields 60, 113004 (1999). arXiv:hep-ph/9906218 ADSCrossRefGoogle Scholar
  61. 61.
    R.K. Ellis, I. Hinchliffe, M. Soldate, J.J.V.D. Bij, Nucl. Phys. B 297, 221–243 (1988) ADSCrossRefGoogle Scholar
  62. 62.
    D.L. Rainwater, R. Szalapski, D. Zeppenfeld, Phys. Rev. D, Part. Fields 54, 6680–6689 (1996). arXiv:hep-ph/9605444 ADSCrossRefGoogle Scholar
  63. 63.
    D.L. Rainwater, D. Summers, D. Zeppenfeld, Phys. Rev. D, Part. Fields 55, 5681–5684 (1997). arXiv:hep-ph/9612320 ADSCrossRefGoogle Scholar
  64. 64.
    CMS Collaboration, CMS-PAS-BTV-09-001 (2009) Google Scholar
  65. 65.
    CMS Collaboration, CMS-PAS-BTV-10-001 (2010) Google Scholar
  66. 66.
    M. Cacciari, G.P. Salam, G. Soyez, J. High Energy Phys. 0804, 063 (2008). arXiv:0802.1189 [hep-ph] ADSCrossRefGoogle Scholar
  67. 67.
    ATLAS Collaboration, ATLAS-CONF-2011-163 (2011) Google Scholar
  68. 68.
    CMS Collaboration, CMS-PAS-HIG-11-032 (2011) Google Scholar
  69. 69.
    D. Binosi, L. Theussl, Comput. Phys. Commun. 161, 76–86 (2004). arXiv:hep-ph/0309015 ADSCrossRefGoogle Scholar
  70. 70.
    D. Binosi, J. Collins, C. Kaufhold, L. Theussl, Comput. Phys. Commun. 180, 1709–1715 (2009). arXiv:0811.4113 [hep-ph] ADSCrossRefGoogle Scholar
  71. 71.
    J.A.M. Vermaseren, Comput. Phys. Commun. 83, 45–58 (1994) ADSzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2012

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikKarlsruher Institut für TechnologieKarlsruheGermany
  2. 2.Physikalisches InstitutAlbert-Ludwigs-Universität FreiburgFreiburgGermany

Personalised recommendations