Chargino decays in the complex MSSM: a full one-loop analysis

  • S. Heinemeyer
  • F. von der Pahlen
  • C. Schappacher
Regular Article - Theoretical Physics

Abstract

We evaluate two-body decay modes of charginos in the Minimal Supersymmetric Standard Model with complex parameters (cMSSM). Assuming heavy scalar quarks we take into account all decay channels involving charginos, neutralinos, (scalar) leptons, Higgs bosons and Standard Model gauge bosons. The evaluation of the decay widths is based on a full one-loop calculation including hard and soft QED radiation. Special attention is paid to decays involving the Lightest Supersymmetric Particle (LSP), i.e. the lightest neutralino, or a neutral or charged Higgs boson. The higher-order corrections of the chargino decay widths involving the LSP can easily reach a level of about ±10%, while the corrections to the decays to Higgs bosons are slightly smaller, translating into corrections of similar size in the respective branching ratios. These corrections are important for the correct interpretation of LSP and Higgs production at the LHC and at a future linear e+e collider. The results will be implemented into the Fortran code FeynHiggs.

References

  1. 1.
    H.P. Nilles, Phys. Rep. 110, 1 (1984) ADSCrossRefGoogle Scholar
  2. 2.
    H.E. Haber, G.L. Kane, Phys. Rep. 117, 75 (1985) ADSCrossRefGoogle Scholar
  3. 3.
    R. Barbieri, Riv. Nuovo Cimento 11, 1 (1988) Google Scholar
  4. 4.
    H. Goldberg, Phys. Rev. Lett. 50, 1419 (1983) ADSCrossRefGoogle Scholar
  5. 5.
    J. Ellis, J. Hagelin, D. Nanopoulos, K. Olive, M. Srednicki, Nucl. Phys. B 238, 453 (1984) ADSCrossRefGoogle Scholar
  6. 6.
    A. Pilaftsis, Phys. Rev. D 58, 096010 (1998). arXiv:hep-ph/9803297 ADSCrossRefGoogle Scholar
  7. 7.
    A. Pilaftsis, Phys. Lett. B 435, 88 (1998). arXiv:hep-ph/9805373 ADSCrossRefGoogle Scholar
  8. 8.
    A. Pilaftsis, C. Wagner, Nucl. Phys. B 553, 3 (1999). arXiv:hep-ph/9902371 ADSCrossRefGoogle Scholar
  9. 9.
    S. Heinemeyer, Eur. Phys. J. C 22, 521 (2001). arXiv:hep-ph/0108059 ADSCrossRefGoogle Scholar
  10. 10.
    G. Aad et al. (The ATLAS Collaboration), arXiv:0901.0512
  11. 11.
    G. Bayatian et al. (CMS Collaboration), J. Phys. G 34, 995 (2007) ADSCrossRefGoogle Scholar
  12. 12.
    TESLA Technical Design Report (TESLA Collaboration) Part 3, Physics at an e + e Linear Collider, arXiv:hep-ph/0106315, see: http://tesla.desy.de/new_pages/TDR_CD/start.html
  13. 13.
    J. Brau et al. (ILC Collaboration), ILC reference design report volume 1—Executive summary. arXiv:0712.1950 [physics.acc-ph]
  14. 14.
    G. Aarons et al. (ILC Collaboration), International Linear Collider reference design report volume 2: Physics at the ILC. arXiv:0709.1893 [hep-ph]
  15. 15.
    E. Accomando et al., (CLIC Physics Working Group Collaboration), arXiv:hep-ph/0412251
  16. 16.
    G. Weiglein et al. (LHC/ILC Study Group), Phys. Rep. 426, 47 (2006). arXiv:hep-ph/0410364 ADSCrossRefGoogle Scholar
  17. 17.
    A. De Roeck et al., Eur. Phys. J. C 66, 525 (2010). arXiv:0909.3240 [hep-ph] ADSCrossRefGoogle Scholar
  18. 18.
    A. De Roeck, J. Ellis, S. Heinemeyer, CERN Cour. 49N10, 27 (2009) Google Scholar
  19. 19.
    S. AbdusSalam et al., arXiv:1109.3859 [hep-ph]
  20. 20.
    J.F. Gunion, H.E. Haber, R.M. Barnett, M. Drees, D. Karatas, X. Tata, H. Baer, Int. J. Mod. Phys. A 2, 1145 (1987) ADSCrossRefGoogle Scholar
  21. 21.
    H. Baer, A. Bartl, D. Karatas, W. Majerotto, X. Tata, Int. J. Mod. Phys. A 4, 4111 (1989) ADSCrossRefGoogle Scholar
  22. 22.
    J. Gunion, H. Haber, Phys. Rev. D 37, 2515 (1988) ADSCrossRefGoogle Scholar
  23. 23.
    J. Gunion, H. Haber, Nucl. Phys. B 307, 445 (1988) ADSCrossRefGoogle Scholar
  24. 24.
    R. Zhang, W. Ma, L. Wan, J. Phys. G 28, 169 (2002). arXiv:hep-ph/0111124 ADSCrossRefGoogle Scholar
  25. 25.
    P.-J. Zhou, W.-G. Ma, R.-Y. Zhang, L.-H. Wan, Commun. Theor. Phys. 38, 173 (2002) Google Scholar
  26. 26.
    A. Djouadi, Y. Mambrini, M. Mühlleitner, Eur. Phys. J. C 20, 563 (2001). arXiv:hep-ph/0104115 ADSCrossRefGoogle Scholar
  27. 27.
    K. Rolbiecki, arXiv:0710.1748 [hep-ph]
  28. 28.
    N. Baro, F. Boudjema, Phys. Rev. D 80, 076010 (2009). arXiv:0906.1665 [hep-ph] ADSCrossRefGoogle Scholar
  29. 29.
    J. Fujimoto, T. Ishikawa, Y. Kurihara, M. Jimbo, T. Kon, M. Kuroda, Phys. Rev. D 75, 113002 (2007) ADSCrossRefGoogle Scholar
  30. 30.
    M. Mühlleitner, A. Djouadi, Y. Mambrini, Comput. Phys. Commun. 168, 46 (2005). arXiv:hep-ph/0311167 ADSCrossRefGoogle Scholar
  31. 31.
    S. Liebler, W. Porod, Nucl. Phys. B 849, 213 (2011). Erratum-ibid. B 856, 125 (2012). arXiv:1011.6163 [hep-ph] ADSMATHCrossRefGoogle Scholar
  32. 32.
    W. Yang, D. Du, Phys. Rev. D 67, 055004 (2003). arXiv:hep-ph/0211453 ADSCrossRefGoogle Scholar
  33. 33.
    H. Eberl, T. Gajdosik, W. Majerotto, B. Schrausser, Phys. Lett. B 618, 171 (2005). arXiv:hep-ph/0502112 ADSCrossRefGoogle Scholar
  34. 34.
    S. Heinemeyer, W. Hollik, G. Weiglein, Comput. Phys. Commun. 124, 76 (2000). arXiv:hep-ph/9812320; see www.feynhiggs.de ADSMATHCrossRefGoogle Scholar
  35. 35.
    S. Heinemeyer, W. Hollik, G. Weiglein, Eur. Phys. J. C 9, 343 (1999). arXiv:hep-ph/9812472 ADSGoogle Scholar
  36. 36.
    G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich, G. Weiglein, Eur. Phys. J. C 28, 133 (2003). arXiv:hep-ph/0212020 ADSCrossRefGoogle Scholar
  37. 37.
    M. Frank, T. Hahn, S. Heinemeyer, W. Hollik, R. Rzehak, G. Weiglein, J. High Energy Phys. 02, 047 (2007). arXiv:hep-ph/0611326 ADSCrossRefGoogle Scholar
  38. 38.
    T. Fritzsche, S. Heinemeyer, H. Rzehak, C. Schappacher, arXiv:1111.7289 [hep-ph]
  39. 39.
    S. Heinemeyer, W. Hollik, H. Rzehak, G. Weiglein, Phys. Lett. B 652, 300 (2007). arXiv:0705.0746 [hep-ph] ADSCrossRefGoogle Scholar
  40. 40.
    S. Heinemeyer, H. Rzehak, C. Schappacher, Phys. Rev. D 82, 075010 (2010). arXiv:1007.0689 [hep-ph] ADSCrossRefGoogle Scholar
  41. 41.
    S. Heinemeyer, H. Rzehak, C. Schappacher, PoSCHARGED 2010, 039 (2010). arXiv:1012.4572 [hep-ph] Google Scholar
  42. 42.
    A. Bartl, H. Eberl, K. Hidaka, S. Kraml, W. Majerotto, W. Porod, Y. Yamada, Phys. Rev. D 59, 115007 (1999). arXiv:hep-ph/9806299 ADSCrossRefGoogle Scholar
  43. 43.
    A. Djouadi, P. Gambino, S. Heinemeyer, W. Hollik, C. Jünger, G. Weiglein, Phys. Rev. Lett. 78, 3626 (1997). arXiv:hep-ph/9612363 ADSCrossRefGoogle Scholar
  44. 44.
    A. Djouadi, P. Gambino, S. Heinemeyer, W. Hollik, C. Jünger, G. Weiglein, Phys. Rev. D 57, 4179 (1998). arXiv:hep-ph/9710438 ADSCrossRefGoogle Scholar
  45. 45.
    W. Hollik, H. Rzehak, Eur. Phys. J. C 32, 127 (2003). arXiv:hep-ph/0305328 ADSCrossRefGoogle Scholar
  46. 46.
    S. Heinemeyer, W. Hollik, H. Rzehak, G. Weiglein, Eur. Phys. J. C 39, 465 (2005). arXiv:hep-ph/0411114 ADSCrossRefGoogle Scholar
  47. 47.
    R. Peccei, H. Quinn, Phys. Rev. Lett. 38, 1440 (1977) ADSCrossRefGoogle Scholar
  48. 48.
    R. Peccei, H. Quinn, Phys. Rev. D 16, 1791 (1977) ADSCrossRefGoogle Scholar
  49. 49.
    S. Dimopoulos, S. Thomas, Nucl. Phys. B 465, 23 (1996). arXiv:hep-ph/9510220 ADSCrossRefGoogle Scholar
  50. 50.
    D. Demir, Phys. Rev. D 60, 055006 (1999). arXiv:hep-ph/9901389 ADSCrossRefGoogle Scholar
  51. 51.
    M. Carena, J. Ellis, A. Pilaftsis, C. Wagner, Nucl. Phys. B 625, 345 (2002). arXiv:hep-ph/0111245 ADSCrossRefGoogle Scholar
  52. 52.
    A. Fowler, PhD thesis, Durham University, UK, September 2010 Google Scholar
  53. 53.
    T. Fritzsche, Berechnung von Observablen zur supersymmetrischen Teilchenerzeugung an Hochenergie-Collidern unter Einschluß höheren Ordnungen (Cuvillier, Göttingen, 2005). ISBN 3-86537-577-4 Google Scholar
  54. 54.
    T. Fritzsche, W. Hollik, Eur. Phys. J. C 24, 619 (2002). arXiv:hep-ph/0203159 CrossRefGoogle Scholar
  55. 55.
    T. Fritzsche, Diploma thesis, Institut für Theoretische Physik, Universität, Karlsruhe, Germany, 2000. See: www-itp.particle.uni-karlsruhe.de/diplomatheses.de.shtml
  56. 56.
    A. Chatterjee, M. Drees, S. Kulkarni, Q. Xu, arXiv:1107.5218 [hep-ph]
  57. 57.
    J. Küblbeck, M. Böhm, A. Denner, Comput. Phys. Commun. 60, 165 (1990) ADSCrossRefGoogle Scholar
  58. 58.
    T. Hahn, Comput. Phys. Commun. 140, 418 (2001). arXiv:hep-ph/0012260 ADSMATHCrossRefGoogle Scholar
  59. 59.
    T. Hahn, C. Schappacher, Comput. Phys. Commun. 143, 54 (2002). arXiv:hep-ph/0105349. The program, the user’s guide and the MSSM model files are available via www.feynarts.de ADSMATHCrossRefGoogle Scholar
  60. 60.
    T. Hahn, M. Pérez-Victoria, Comput. Phys. Commun. 118, 153 (1999). arXiv:hep-ph/9807565 ADSCrossRefGoogle Scholar
  61. 61.
    F. del Aguila, A. Culatti, R. Munoz Tapia, M. Perez-Victoria, Nucl. Phys. B 537, 561 (1999). arXiv:hep-ph/9806451 ADSMATHCrossRefGoogle Scholar
  62. 62.
    W. Siegel, Phys. Lett. B 84, 193 (1979) MathSciNetADSCrossRefGoogle Scholar
  63. 63.
    D. Capper, D. Jones, P. van Nieuwenhuizen, Nucl. Phys. B 167, 479 (1980) ADSCrossRefGoogle Scholar
  64. 64.
    D. Stöckinger, J. High Energy Phys. 0503, 076 (2005). arXiv:hep-ph/0503129 ADSCrossRefGoogle Scholar
  65. 65.
    W. Hollik, D. Stöckinger, Phys. Lett. B 634, 63 (2006). arXiv:hep-ph/0509298 ADSCrossRefGoogle Scholar
  66. 66.
    A. Denner, Fortschr. Phys. 41, 307 (1993). arXiv:0709.1075 [hep-ph] Google Scholar
  67. 67.
    K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010) ADSCrossRefGoogle Scholar
  68. 68.
    M. Dugan, B. Grinstein, L. Hall, Nucl. Phys. B 255, 413 (1985) ADSCrossRefGoogle Scholar
  69. 69.
    W. Hollik, J. Illana, S. Rigolin, D. Stöckinger, Phys. Lett. B 416, 345 (1998). arXiv:hep-ph/9707437 ADSCrossRefGoogle Scholar
  70. 70.
    W. Hollik, J. Illana, S. Rigolin, D. Stöckinger, Phys. Lett. B 425, 322 (1998). arXiv:hep-ph/9711322 ADSCrossRefGoogle Scholar
  71. 71.
    D. Demir, O. Lebedev, K. Olive, M. Pospelov, A. Ritz, Nucl. Phys. B 680, 339 (2004). arXiv:hep-ph/0311314 ADSCrossRefGoogle Scholar
  72. 72.
    D. Chang, W. Keung, A. Pilaftsis, Phys. Rev. Lett. 82, 900 (1999). Erratum-ibid. 83, 3972 (1999). arXiv:hep-ph/9811202 ADSCrossRefGoogle Scholar
  73. 73.
    A. Pilaftsis, Phys. Lett. B 471, 174 (1999). arXiv:hep-ph/9909485 ADSCrossRefGoogle Scholar
  74. 74.
    O. Lebedev, K. Olive, M. Pospelov, A. Ritz, Phys. Rev. D 70, 016003 (2004). arXiv:hep-ph/0402023 ADSCrossRefGoogle Scholar
  75. 75.
    Y. Li, S. Profumo, M. Ramsey-Musolf, J. High Energy Phys. 1008, 062 (2010). arXiv:1006.1440 [hep-ph] ADSCrossRefGoogle Scholar
  76. 76.
    V. Barger, T. Falk, T. Han, J. Jiang, T. Li, T. Plehn, Phys. Rev. D 64, 056007 (2001). arXiv:hep-ph/0101106 ADSCrossRefGoogle Scholar
  77. 77.
    (The Muon g-2 Collaboration), Phys. Rev. Lett. 92, 161802 (2004). arXiv:hep-ex/0401008 CrossRefGoogle Scholar
  78. 78.
    G. Bennett et al. (The Muon g-2 Collaboration), Phys. Rev. D 73, 072003 (2006). arXiv:hep-ex/0602035 ADSCrossRefGoogle Scholar
  79. 79.
    D. Stöckinger, J. Phys. G 34, R45 (2007). arXiv:hep-ph/0609168 ADSCrossRefGoogle Scholar
  80. 80.
    J. Miller, E. de Rafael, B. Roberts, Rep. Prog. Phys. 70, 795 (2007). arXiv:hep-ph/0703049 ADSCrossRefGoogle Scholar
  81. 81.
    F. Jegerlehner, A. Nyffeler, Phys. Rep. 477, 1 (2009). arXiv:0902.3360 [hep-ph] ADSCrossRefGoogle Scholar
  82. 82.
    J. Prades, Acta Phys. Pol. B, Proc. Suppl. 3, 75 (2010). arXiv:0909.2546 [hep-ph] Google Scholar
  83. 83.
    T. Teubner, K. Hagiwara, R. Liao, A. Martin, D. Nomura, arXiv:1001.5401 [hep-ph]
  84. 84.
    K. Hagiwara, R. Liao, A.D. Martin, D. Nomura, T. Teubner, J. Phys. G 38, 085003 (2011). arXiv:1105.3149 [hep-ph] ADSCrossRefGoogle Scholar
  85. 85.
    M. Davier, A. Hoecker, B. Malaescu, Z. Zhang, Eur. Phys. J. C 71, 1515 (2011). arXiv:1010.4180 [hep-ph] ADSCrossRefGoogle Scholar
  86. 86.
    LEP Higgs working group, Phys. Lett. B 565, 61 (2003). arXiv:hep-ex/0306033 ADSCrossRefGoogle Scholar
  87. 87.
    LEP Higgs working group, Eur. Phys. J. C 47, 547 (2006). arXiv:hep-ex/0602042 ADSCrossRefGoogle Scholar
  88. 88.
    H. Dreiner, S. Heinemeyer, O. Kittel, U. Langenfeld, A. Weber, G. Weiglein, Eur. Phys. J. C 62, 547 (2009). arXiv:0901.3485 [hep-ph] ADSCrossRefGoogle Scholar
  89. 89.
    T. Blank, W. Hollik, Nucl. Phys. B 514, 113 (1998). arXiv:hep-ph/9703392 ADSCrossRefGoogle Scholar
  90. 90.
    W. Öller, H. Eberl, W. Majerotto, Phys. Rev. D 71, 115002 (2005). arXiv:hep-ph/0504109 ADSCrossRefGoogle Scholar
  91. 91.
    M. Diaz, M. Rivera, D. Ross, J. High Energy Phys. 1004, 098 (2010). arXiv:0911.4403 [hep-ph] ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2012

Authors and Affiliations

  • S. Heinemeyer
    • 1
  • F. von der Pahlen
    • 1
  • C. Schappacher
    • 2
  1. 1.Instituto de Física de Cantabria (CSIC-UC)SantanderSpain
  2. 2.Institut für Theoretische PhysikKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations