Revealing Bell’s nonlocality for unstable systems in high energy physics
Abstract
Entanglement and its consequences—in particular the violation of Bell inequalities, which defies our concepts of realism and locality—have been proven to play key roles in Nature by many experiments for various quantum systems. Entanglement can also be found in systems not consisting of ordinary matter and light, i.e. in massive meson–antimeson systems. Bell inequalities have been discussed for these systems, but up to date no direct experimental test to conclusively exclude local realism was found. This mainly stems from the fact that one only has access to a restricted class of observables and that these systems are also decaying. In this Letter we put forward a Bell inequality for unstable systems which can be tested at accelerator facilities with current technology. Herewith, the long awaited proof that such systems at different energy scales can reveal the sophisticated “dynamical” nonlocal feature of Nature in a direct experiment gets feasible. Moreover, the role of entanglement and \(\mathcal{CP}\) violation, an asymmetry between matter and antimatter, is explored, a special feature offered only by these meson–antimeson systems.
Keywords
Entangle State Bell Inequality Accelerator Facility Neutral Kaon Conclusive TestReferences
- 1.J. Bell, On the Einstein-Podolsky-Rosen paradox. Physics 1, 195–200 (1964) Google Scholar
- 2.A. Aspect et al., Experimental tests of realistic local theories via Bell’s theorem. Phys. Rev. Lett. 47, 460–463 (1981) ADSCrossRefGoogle Scholar
- 3.G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, A. Zeilinger, Violation of Bell’s inequality under strict Einstein locality conditions. Phys. Rev. Lett. 81, 5039–5043 (1998) MathSciNetADSMATHCrossRefGoogle Scholar
- 4.M.A. Rowe et al., Experimental violation of a Bell’s inequality with efficient detectors. Nature 409, 791–794 (2001) CrossRefGoogle Scholar
- 5.M. Ansmann et al., Violation of Bell’s inequality in Josephson phase qubits. Nature 461, 504–506 (2009) ADSCrossRefGoogle Scholar
- 6.Y. Hasegawa, R. Loidl, G. Badurek, M. Baron, H. Rauch, Violation of a Bell-like inequality in single-neutron interferometry. Nature 425, 45–47 (2003) ADSCrossRefGoogle Scholar
- 7.R.A. Bertlmann, B.C. Hiesmayr, Bell inequalities for entangled kaons and their unitary time evolution. Phys. Rev. A 63, 062112 (2001) ADSCrossRefGoogle Scholar
- 8.B.C. Hiesmayr, Nonlocality and entanglement in a strange system. Eur. Phys. J. C 50, 73 (2007) ADSCrossRefGoogle Scholar
- 9.R.A. Bertlmann, A. Bramon, G. Garbarino, B.C. Hiesmayr, A Bell inequality in high energy physics really experimentally violated? Phys. Lett. A 332, 355 (2004) ADSMATHCrossRefGoogle Scholar
- 10.G.C. Ghiradi, A. Rimini, T. Weber, The puzzling entanglement of Schrödingers wavefunction. Found. Phys. 18, 1 (1988) MathSciNetADSCrossRefGoogle Scholar
- 11.B.C. Hiesmayr, A generalized Bell inequality and decoherence for the K0 anti-K0 system. Found. Phys. Lett. 14, 231 (2001) CrossRefGoogle Scholar
- 12.A. Bramon, R. Escribano, G. Garbarino, Bell’s inequality tests with meson–antimeson pairs. Found. Phys. 26, 563 (2006) MathSciNetADSCrossRefGoogle Scholar
- 13.A. Bramon, R. Escribano, G. Garbarino, Bell’s inequality tests: from photons to B-mesons. J. Mod. Opt. 52, 1681 (2005) ADSMATHCrossRefGoogle Scholar
- 14.J. Li, C.F. Qiao, New possibilities for testing local realism in high energy physics. Phys. Lett. A 373, 4311 (2009) ADSCrossRefGoogle Scholar
- 15.M. Genovese, C. Novero, E. Predazzi, On the conlusive tests of local realism and pseudoscalar mesons. Found. Phys. 32, 589 (2002) MathSciNetCrossRefGoogle Scholar
- 16.A. Bramon, G. Garbarino, B.C. Hiesmayr, Active and passive quantum eraser for neutral kaons. Phys. Rev. A 69, 062111 (2004) ADSCrossRefGoogle Scholar
- 17.A. Bramon, G. Garbarino, B.C. Hiesmayr, Quantum marking and quantum erasure for neutral kaons. Phys. Rev. Lett. 92, 020405 (2004) ADSCrossRefGoogle Scholar
- 18.G. Amelino-Camelia et al., Physics with the KLOE-2 experiment at the upgraded DAPHNE. Eur. Phys. J. C 68(3–4), 619 (2010) ADSCrossRefGoogle Scholar
- 19.Y. Aharonov, M.S. Zubairy, Time and the quantum: erasing the past and impacting the future. Science 307, 875–879 (2005) MathSciNetADSMATHCrossRefGoogle Scholar
- 20.R.A. Bertlmann, W. Grimus, B.C. Hiesmayr, An open–quantum–system formulation of particle decay. Phys. Rev. A 73, 054101 (2006) ADSCrossRefGoogle Scholar
- 21.M. Czachor, Einstein-Podolsky-Rosen-Bohm experiment with relativistic massive particles. Phys. Rev. A 55, 72 (1997) ADSCrossRefGoogle Scholar
- 22.N. Friis, R.A. Bertlmann, M. Huber, B.C. Hiesmayr, Relativistic entanglement of two massive particles. Phys. Rev. A 81, 042114 (2010) ADSCrossRefGoogle Scholar
- 23.J.F. Clauser, M.A. Horne, A. Shimony, R.A. Holt, Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969) ADSCrossRefGoogle Scholar
- 24.A. Apostolakis et al., An EPR experiment testing the non-separability of the \(K^{0} \bar{K}^{0}\) wave function. Phys. Lett. B 422, 339–348 (1998) ADSCrossRefGoogle Scholar
- 25.A. Di Domenico, A. Gabriel, B.C. Hiesmayr, F. Hipp, M. Huber, G. Krizek, K. Muehlbacher, S. Radic, C. Spengler, L. Theussl, Heisenberg’s uncertainty relation and Bell inequalities in high energy physics. arXiv:1101.4517 (accepted by Found. Phys.). doi: 10.1007/s10701-011-9575-y
- 26.W. Rosenfeld, M. Weber, J. Volz, F. Henkel, M. Krug, A. Cabello, M. Zukowski, H. Weinfurter, Towards a loophole-free test of Bell’s inequality with entangled pairs of neutral atoms. Adv. Sci. Lett. 2, 469 (2009) CrossRefGoogle Scholar
- 27.A. Bramon, R. Escribano, G. Gabarino, A review of Bell inequality tests with neutral kaons, in Handbook on Neutral Kaon Interferometry at a Φ factory, ed. by A. Di Domenico. Frascati Physics Series, vol. XLIII (2007), pp. 217–254 Google Scholar
- 28.A. Di Domenico (KLOE Collaboration), CPT symmetry and quantum mechanics tests in the neutral kaon system at KLOE. Found. Phys. 40, 852 (2010) ADSMATHCrossRefGoogle Scholar
- 29.J.F. Clauser, M.A. Horne, Experimental consequences of objective local theories. Phys. Rev. D 10, 526–535 (1974) ADSCrossRefGoogle Scholar
- 30.N. Gisin, A. Go, EPR test with photons and kaons: Analogies. Am. J. Phys. 69, 264–270 (2001) ADSCrossRefGoogle Scholar
- 31.R. Foadi, F. Selleri, Quantum mechanics versus local realism for kaons. Phys. Rev. A 61, 012106 (2000) ADSCrossRefGoogle Scholar