Measurement of CP asymmetries in neutralino production at the ILC

  • O. Kittel
  • G. Moortgat-Pick
  • K. Rolbiecki
  • P. Schade
  • M. Terwort
Regular Article - Theoretical Physics

Abstract

We study the prospects to measure the CP-sensitive triple-product asymmetries in neutralino production \(e^{+} e^{-} \to\tilde{\chi}^{0}_{i}\tilde{\chi}^{0}_{1}\) and subsequent leptonic two-body decays \(\tilde{\chi}^{0}_{i} \to \tilde{\ell}_{R} \ell\), \(\tilde{\ell}_{R} \to \tilde{\chi}^{0}_{1} \ell\), for =e,μ, within the Minimal Supersymmetric Standard Model. We include a full detector simulation of the International Large Detector for the International Linear Collider. The simulation was performed at a center-of-mass energy of \(\sqrt{s}=500\) GeV, including the relevant Standard Model background processes, a realistic beam energy spectrum, beam backgrounds and a beam polarization of 80% and −60% for the electron and positron beams, respectively. In order to effectively disentangle different signal samples and reduce SM and SUSY backgrounds we apply a method of kinematic reconstruction. Assuming an integrated luminosity of 500 fb−1 collected by the experiment and the performance of the current ILD detector, we arrive at a relative measurement accuracy of 10% for the CP-sensitive asymmetry in our scenario. We demonstrate that our method of signal selection using kinematic reconstruction can be applied to a broad class of scenarios and it allows disentangling processes with similar kinematic properties.

References

  1. 1.
    H.E. Haber, G.L. Kane, Phys. Rep. 117, 75–263 (1985) ADSCrossRefGoogle Scholar
  2. 2.
    H.P. Nilles, Phys. Rep. 110, 1–162 (1984) ADSCrossRefGoogle Scholar
  3. 3.
    H.E. Haber, Nucl. Phys. Proc. Suppl. 62, 469–484 (1998). arXiv:hep-ph/9709450 ADSCrossRefGoogle Scholar
  4. 4.
    T. Ibrahim, P. Nath, arXiv:hep-ph/0210251
  5. 5.
    T. Ibrahim, P. Nath, Rev. Mod. Phys. 80, 577–631 (2008). arXiv:0705.2008 [hep-ph] ADSCrossRefGoogle Scholar
  6. 6.
    J.R. Ellis, J.S. Lee, A. Pilaftsis, Phys. Rev. D 76, 115011 (2007). arXiv:0708.2079 [hep-ph] ADSCrossRefGoogle Scholar
  7. 7.
    V.D. Barger, et al., Phys. Rev. D 64, 056007 (2001). arXiv:hep-ph/0101106 ADSCrossRefGoogle Scholar
  8. 8.
    J.R. Ellis, S. Ferrara, D.V. Nanopoulos, Phys. Lett. B 114, 231 (1982) ADSCrossRefGoogle Scholar
  9. 9.
    A. Bartl, W. Majerotto, W. Porod, D. Wyler, Phys. Rev. D 68, 053005 (2003). arXiv:hep-ph/0306050 ADSCrossRefGoogle Scholar
  10. 10.
    S.Y. Choi, M. Drees, B. Gaissmaier, Phys. Rev. D 70, 014010 (2004). arXiv:hep-ph/0403054 ADSCrossRefGoogle Scholar
  11. 11.
    S.Y. Ayazi, Y. Farzan, Phys. Rev. D 74, 055008 (2006). arXiv:hep-ph/0605272 ADSCrossRefGoogle Scholar
  12. 12.
    J.R. Ellis, J.S. Lee, A. Pilaftsis, J. High Energy Phys. 10, 049 (2008). arXiv:0808.1819 [hep-ph] ADSCrossRefGoogle Scholar
  13. 13.
    F. Deppisch, O. Kittel, J. High Energy Phys. 09, 110 (2009). arXiv:0905.3088 [hep-ph] ADSCrossRefGoogle Scholar
  14. 14.
    A. Bartl, S. Hesselbach, K. Hidaka, T. Kernreiter, W. Porod, Phys. Lett. B 573, 153–161 (2003). arXiv:hep-ph/0307317 ADSCrossRefGoogle Scholar
  15. 15.
    A. Bartl, S. Hesselbach, K. Hidaka, T. Kernreiter, W. Porod, Phys. Rev. D 70, 035003 (2004). arXiv:hep-ph/0311338 ADSCrossRefGoogle Scholar
  16. 16.
    A. Bartl, K. Hidaka, T. Kernreiter, W. Porod, Phys. Lett. B 538, 137–145 (2002). arXiv:hep-ph/0204071 ADSCrossRefGoogle Scholar
  17. 17.
    A. Bartl, K. Hidaka, T. Kernreiter, W. Porod, Phys. Rev. D 66, 115009 (2002). arXiv:hep-ph/0207186 ADSCrossRefGoogle Scholar
  18. 18.
    K. Rolbiecki, J. Tattersall, G. Moortgat-Pick, Eur. Phys. J. C 71, 1517 (2011). arXiv:0909.3196 [hep-ph] ADSCrossRefGoogle Scholar
  19. 19.
    T. Gajdosik, R.M. Godbole, S. Kraml, J. High Energy Phys. 09, 051 (2004). arXiv:hep-ph/0405167 ADSCrossRefGoogle Scholar
  20. 20.
    G. Valencia, arXiv:hep-ph/9411441
  21. 21.
    G.C. Branco, L. Lavoura, J.P. Silva, Int. Ser. Monogr. Phys. 103, 1–536 (1999) Google Scholar
  22. 22.
    A. Bartl, H. Fraas, T. Kernreiter, O. Kittel, Eur. Phys. J. C 33, 433–442 (2004). arXiv:hep-ph/0306304 ADSCrossRefGoogle Scholar
  23. 23.
    P. Langacker, G. Paz, L.-T. Wang, I. Yavin, J. High Energy Phys. 07, 055 (2007). arXiv:hep-ph/0702068 ADSCrossRefGoogle Scholar
  24. 24.
    G. Moortgat-Pick, K. Rolbiecki, J. Tattersall, P. Wienemann, J. High Energy Phys. 01, 004 (2010). arXiv:0908.2631 [hep-ph] ADSCrossRefGoogle Scholar
  25. 25.
    A. Bartl, E. Christova, K. Hohenwarter-Sodek, T. Kernreiter, Phys. Rev. D 70, 095007 (2004). arXiv:hep-ph/0409060 ADSCrossRefGoogle Scholar
  26. 26.
    J. Ellis, F. Moortgat, G. Moortgat-Pick, J.M. Smillie, J. Tattersall, Eur. Phys. J. C 60, 633–651 (2009). arXiv:0809.1607 [hep-ph] ADSCrossRefGoogle Scholar
  27. 27.
    G. Moortgat-Pick, K. Rolbiecki, J. Tattersall, Phys. Rev. D 83, 115012 (2011). arXiv:1008.2206 [hep-ph] ADSCrossRefGoogle Scholar
  28. 28.
    A. Bartl, E. Christova, K. Hohenwarter-Sodek, T. Kernreiter, J. High Energy Phys. 11, 076 (2006). arXiv:hep-ph/0610234 ADSCrossRefGoogle Scholar
  29. 29.
    F.F. Deppisch, O. Kittel, J. High Energy Phys. 06, 067 (2010). arXiv:1003.5186 [hep-ph] ADSCrossRefGoogle Scholar
  30. 30.
    H. Dreiner, O. Kittel, S. Kulkarni, A. Marold, Phys. Rev. D 83, 095012 (2011). arXiv:1011.2449 [hep-ph] ADSCrossRefGoogle Scholar
  31. 31.
    T. Behnke, et al. (ILC Collaboration), arXiv:0712.2356 [physics.ins-det]
  32. 32.
    J. Brau, et al. (ILC Collaboration), arXiv:0712.1950 [physics.acc-ph]
  33. 33.
    G. Aarons, et al. (ILC Collaboration), arXiv:0709.1893 [hep-ph]
  34. 34.
    J.A. Aguilar-Saavedra, et al. (ECFA/DESY LC Physics Working Group Collaboration), arXiv:hep-ph/0106315
  35. 35.
    A. Bartl, H. Fraas, O. Kittel, W. Majerotto, Phys. Rev. D 69, 035007 (2004). arXiv:hep-ph/0308141 ADSCrossRefGoogle Scholar
  36. 36.
    A. Bartl, T. Kernreiter, O. Kittel, Phys. Lett. B 578, 341–348 (2004). arXiv:hep-ph/0309340 ADSCrossRefGoogle Scholar
  37. 37.
    S.Y. Choi, M. Drees, B. Gaissmaier, J. Song, Phys. Rev. D 69, 035008 (2004). arXiv:hep-ph/0310284 ADSCrossRefGoogle Scholar
  38. 38.
    A. Bartl, H. Fraas, O. Kittel, W. Majerotto, Eur. Phys. J. C 36, 233–243 (2004). arXiv:hep-ph/0402016 ADSCrossRefGoogle Scholar
  39. 39.
    J.A. Aguilar-Saavedra, Nucl. Phys. B 697, 207–224 (2004). arXiv:hep-ph/0404104 ADSMATHCrossRefGoogle Scholar
  40. 40.
    S.Y. Choi, Y.G. Kim, Phys. Rev. D 69, 015011 (2004). arXiv:hep-ph/0311037 ADSCrossRefGoogle Scholar
  41. 41.
    A. Bartl, K. Hohenwarter-Sodek, T. Kernreiter, O. Kittel, M. Terwort, J. High Energy Phys. 07, 054 (2009). arXiv:0905.1782 [hep-ph] ADSCrossRefGoogle Scholar
  42. 42.
  43. 43.
    Y. Kizukuri, N. Oshimo, Phys. Lett. B 249, 449–454 (1990) ADSCrossRefGoogle Scholar
  44. 44.
    S.Y. Choi, H.S. Song, W.Y. Song, Phys. Rev. D 61, 075004 (2000). arXiv:hep-ph/9907474 ADSCrossRefGoogle Scholar
  45. 45.
    A. Bartl, H. Fraas, S. Hesselbach, K. Hohenwarter-Sodek, G.A. Moortgat-Pick, J. High Energy Phys. 08, 038 (2004). arXiv:hep-ph/0406190 ADSCrossRefGoogle Scholar
  46. 46.
    J.A. Aguilar-Saavedra, Phys. Lett. B 596, 247–255 (2004). arXiv:hep-ph/0403243 ADSGoogle Scholar
  47. 47.
    S.Y. Choi, B.C. Chung, J. Kalinowski, Y.G. Kim, K. Rolbiecki, Eur. Phys. J. C 46, 511–520 (2006). arXiv:hep-ph/0504122 ADSCrossRefGoogle Scholar
  48. 48.
    S.Y. Choi, et al., Eur. Phys. J. C 14, 535–546 (2000). arXiv:hep-ph/0002033 ADSCrossRefGoogle Scholar
  49. 49.
    A. Bartl, H. Fraas, O. Kittel, W. Majerotto, Phys. Lett. B 598, 76–82 (2004). arXiv:hep-ph/0406309 ADSCrossRefGoogle Scholar
  50. 50.
    O. Kittel, A. Bartl, H. Fraas, W. Majerotto, Phys. Rev. D 70, 115005 (2004). arXiv:hep-ph/0410054 ADSCrossRefGoogle Scholar
  51. 51.
    J.A. Aguilar-Saavedra, Nucl. Phys. B 717, 119–136 (2005). arXiv:hep-ph/0410068 ADSCrossRefGoogle Scholar
  52. 52.
    A. Bartl, K. Hohenwarter-Sodek, T. Kernreiter, O. Kittel, M. Terwort, Nucl. Phys. B 802, 77–91 (2008). arXiv:0802.3592 [hep-ph] ADSMATHCrossRefGoogle Scholar
  53. 53.
    H.K. Dreiner, O. Kittel, A. Marold, Phys. Rev. D 82, 116005 (2010). arXiv:1001.4714 [hep-ph] ADSCrossRefGoogle Scholar
  54. 54.
    Y. Kizukuri, N. Oshimo, arXiv:hep-ph/9310224
  55. 55.
    A. Bartl, et al., Eur. Phys. J. C 51, 149–161 (2007). arXiv:hep-ph/0608065 ADSCrossRefGoogle Scholar
  56. 56.
    G. Moortgat-Pick, et al., Phys. Rep. 460, 131–243 (2008). arXiv:hep-ph/0507011 ADSCrossRefGoogle Scholar
  57. 57.
    A. Bartl, K. Hohenwarter-Sodek, T. Kernreiter, H. Rud, Eur. Phys. J. C 36, 515–522 (2004). arXiv:hep-ph/0403265 ADSCrossRefGoogle Scholar
  58. 58.
    A. Bartl, et al., J. High Energy Phys. 01, 170 (2006). arXiv:hep-ph/0510029 ADSCrossRefGoogle Scholar
  59. 59.
    S.Y. Choi, M. Drees, J. Song, J. High Energy Phys. 09, 064 (2006). arXiv:hep-ph/0602131 ADSCrossRefGoogle Scholar
  60. 60.
    A. Bartl, et al., Phys. Lett. B 644, 165–171 (2007). arXiv:hep-ph/0610431 ADSCrossRefGoogle Scholar
  61. 61.
    A. Bartl, K. Hohenwarter-Sodek, T. Kernreiter, O. Kittel, J. High Energy Phys. 09, 079 (2007). arXiv:0706.3822 [hep-ph] ADSCrossRefGoogle Scholar
  62. 62.
    J.A. Aguilar-Saavedra, A.M. Teixeira, Nucl. Phys. B 675, 70–98 (2003). arXiv:hep-ph/0307001 ADSCrossRefGoogle Scholar
  63. 63.
    J.A. Aguilar-Saavedra, arXiv:hep-ph/0312140
  64. 64.
    M. Berggren, arXiv:hep-ph/0508247
  65. 65.
    D. Atwood, S. Bar-Shalom, G. Eilam, A. Soni, Phys. Rep. 347, 1–222 (2001). arXiv:hep-ph/0006032 ADSCrossRefGoogle Scholar
  66. 66.
    S.Y. Choi, J. Kalinowski, G.A. Moortgat-Pick, P.M. Zerwas, Eur. Phys. J. C 22, 563–579 (2001). arXiv:hep-ph/0108117. Addendum-ibid. C 23, 769 (2002) ADSCrossRefGoogle Scholar
  67. 67.
    G.A. Moortgat-Pick, H. Fraas, A. Bartl, W. Majerotto, Eur. Phys. J. C 9, 521–534 (1999). arXiv:hep-ph/9903220. Erratum-ibid. C 9, 549 (1999) ADSCrossRefGoogle Scholar
  68. 68.
    J. Bernabéu, M.B. Gavela, in CP Violation, ed. by C. Jarlskog (World Scientific, Singapore, 1989), p. 269 Google Scholar
  69. 69.
    M.R. Buckley, H. Murayama, W. Klemm, V. Rentala, Phys. Rev. D 78, 014028 (2008). arXiv:0711.0364 [hep-ph] ADSCrossRefGoogle Scholar
  70. 70.
    W. Kilian, T. Ohl, J. Reuter, arXiv:0708.4233 [hep-ph]
  71. 71.
    ILD Concept Group: arXiv:1006.3396 [hep-ex]
  72. 72.
    S. Agostinelli, et al. (GEANT4 Collaboration), Nucl. Instrum. Methods A 506, 250–303 (2003) ADSCrossRefGoogle Scholar
  73. 73.
    G. Musat, in LCWS 2004, Proceedings (2004), pp. 437–439 Google Scholar
  74. 74.
    P. Mora de Freitas, in LCWS 2004, Proceedings (2004), pp. 441–444 Google Scholar
  75. 75.
    P. Bechtle, M. Berggren, J. List, P. Schade, O. Stempel, Phys. Rev. D 82, 055016 (2010). arXiv:0908.0876 [hep-ex] ADSCrossRefGoogle Scholar
  76. 76.
    M. Skrzypek, S. Jadach, Z. Phys. C 49, 577–584 (1991) CrossRefGoogle Scholar
  77. 77.
    T. Ohl, Comput. Phys. Commun. 101, 269–288 (1997). arXiv:hep-ph/9607454 ADSCrossRefGoogle Scholar
  78. 78.
    O. Wendt, F. Gaede, T. Kramer, Pramana 69, 1109–1114 (2007). arXiv:physics/0702171 ADSCrossRefGoogle Scholar
  79. 79.
    M.A. Thomson, AIP Conf. Proc. 896, 215–224 (2007) ADSCrossRefGoogle Scholar
  80. 80.
    P. Bambade, M. Berggren, F. Richard, Z. Zhang, arXiv:hep-ph/0406010
  81. 81.
    M. Ball, Diplomarbeit, University of Hamburg (2003). http://www-flc.desy.de/thesis/diplom.2002.ball.ps.gz
  82. 82.
    N. D’Ascenzo, PhD thesis, DESY, Hamburg (2009) Google Scholar
  83. 83.
    K. Desch, J. Kalinowski, G.A. Moortgat-Pick, M.M. Nojiri, G. Polesello, J. High Energy Phys. 02, 035 (2004). arXiv:hep-ph/0312069 ADSCrossRefGoogle Scholar
  84. 84.
    K. Desch, J. Kalinowski, G. Moortgat-Pick, K. Rolbiecki, W.J. Stirling, J. High Energy Phys. 12, 007 (2006). arXiv:hep-ph/0607104 ADSCrossRefGoogle Scholar
  85. 85.
    M. Bahr, et al., Eur. Phys. J. C 58, 639–707 (2008). arXiv:0803.0883 [hep-ph] ADSCrossRefGoogle Scholar
  86. 86.
    S. Gieseke, et al., arXiv:1102.1672 [hep-ph]
  87. 87.
    M. Gigg, P. Richardson, Eur. Phys. J. C 51, 989–1008 (2007). arXiv:hep-ph/0703199 ADSCrossRefGoogle Scholar
  88. 88.
    H.-U. Martyn, arXiv:hep-ph/0302024
  89. 89.
    E. Boos, G.A. Moortgat-Pick, H. Martyn, M. Sachwitz, A. Vologdin, arXiv:hep-ph/0211040
  90. 90.
    E. Boos, H. Martyn, G.A. Moortgat-Pick, M. Sachwitz, A. Sherstnev, et al., Eur. Phys. J. C 30, 395–407 (2003). arXiv:hep-ph/0303110 ADSCrossRefGoogle Scholar
  91. 91.
    M.M. Nojiri, K. Fujii, T. Tsukamoto, Phys. Rev. D 54, 6756–6776 (1996). arXiv:hep-ph/9606370 ADSCrossRefGoogle Scholar
  92. 92.
    F. James, M. Roos, Comput. Phys. Commun. 10, 343–367 (1975) ADSCrossRefGoogle Scholar
  93. 93.
    F. James, CERN Program Library Long Writeup D 506, 1994 Google Scholar
  94. 94.
    W. Oller, H. Eberl, W. Majerotto, Phys. Lett. B 590, 273–283 (2004). arXiv:hep-ph/0402134 ADSCrossRefGoogle Scholar
  95. 95.
    T. Fritzsche, W. Hollik, Nucl. Phys. Proc. Suppl. 135, 102–106 (2004). arXiv:hep-ph/0407095 ADSCrossRefGoogle Scholar
  96. 96.
    P. Bechtle, K. Desch, W. Porod, P. Wienemann, Eur. Phys. J. C 46, 533–544 (2006). arXiv:hep-ph/0511006 ADSCrossRefGoogle Scholar
  97. 97.
    R. Lafaye, T. Plehn, M. Rauch, D. Zerwas, Eur. Phys. J. C 54, 617–644 (2008). arXiv:0709.3985 [hep-ph] ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2012

Authors and Affiliations

  • O. Kittel
    • 1
  • G. Moortgat-Pick
    • 2
    • 3
  • K. Rolbiecki
    • 3
  • P. Schade
    • 3
    • 4
  • M. Terwort
    • 3
  1. 1.Departamento de Física Teórica y del Cosmos and CAFPEUniversidad de GranadaGranadaSpain
  2. 2.University of HamburgHamburgGermany
  3. 3.DESYHamburgGermany
  4. 4.CERNGeneve 23Switzerland

Personalised recommendations