Advertisement

Phase structure of the linear sigma model with the standard symmetry breaking term

  • Tran Huu Phat
  • Nguyen Van Thu
Regular Article - Theoretical Physics

Abstract

The linear sigma model at finite isospin chemical potential μ and temperature T is systematically studied by means of the Cornwal–Jackiw–Tomboulis (CJT) effective potential calculated in the improved Hartree–Fock (HF) approximation, where the Goldstone theorem and the thermodynamic consistency are respected. It results that in the chiral limit, for μ=0 the chiral phase transition is second order as expected from the general universality arguments, and for μ≠0 the phase diagram for the pion condensation in the (T,μ) plane exhibits a tricritical point which is crossover from first-order to second-order phase transitions. In the physical world, where the chiral symmetry is explicitly broken, the pion condensation occurs at μ=m π , the pion mass in vacuum, and its phase diagram is basically in agreement with those found from the chiral perturbation theory. The chiral symmetry gets restored at high values of T for fixed μ and of μ for fixed T.

Keywords

Chiral Symmetry Temperature Step Chiral Perturbation Theory Chiral Limit Chiral Condensate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A.B. Migdal, Sov. Phys. JETP 36, 1052 (1973) ADSGoogle Scholar
  2. 2.
    R.F. Sawyer, Phys. Rev. Lett. 29, 382 (1972) CrossRefADSGoogle Scholar
  3. 3.
    D.K. Campell, R.F. Dashen, J.T. Manassah, Phys. Rev. D 12, 979 (1975) CrossRefADSGoogle Scholar
  4. 4.
    D.K. Campell, R.F. Dashen, J.T. Manassah, Phys. Rev. D 12, 1010 (1975) CrossRefADSGoogle Scholar
  5. 5.
    D.B. Kaplan, A.E. Nelson, Phys. Lett. B 175, 57 (1986) CrossRefADSGoogle Scholar
  6. 6.
    A.W. Steiner, M. Prakash, J.M. Lattimer, P.J. Ellis, Phys. Rep. 411, 325 (2005) CrossRefADSGoogle Scholar
  7. 7.
    C.H. Lee, Phys. Rep. 275, 255 (1996) CrossRefADSGoogle Scholar
  8. 8.
    I. Bombarci, in Isospin Physics in Heavy-Ion Collisions, ed. by B.A. Li, U. Schoeder (Nova Science Publishers, New York, 2001), pp. 35–81 Google Scholar
  9. 9.
    V. Baran, M. Colonna, V. Greco, M. Di Toro, Phys. Rep. 410, 335 (2005) and references herein CrossRefADSGoogle Scholar
  10. 10.
    P. Danielewicz, R. Lacey, W.G. Lynch, Science 289, 1592 (2002) CrossRefADSGoogle Scholar
  11. 11.
    B.A. Li, C.M. Ko, W. Bauer, Int. J. Mod. Phys. E 7, 147 (1998) CrossRefADSGoogle Scholar
  12. 12.
    C.J. Horowitz, J. Piekarewicz, Phys. Rev. Lett. 86, 5647 (2001) CrossRefADSGoogle Scholar
  13. 13.
    S. Typel, B.A. Brown, Phys. Rev. C 64, 027302 (2001) CrossRefADSGoogle Scholar
  14. 14.
    F. Hofmann, C.M. Keil, H. Lenske, Phys. Rev. C 64, 034314 (2001) CrossRefADSGoogle Scholar
  15. 15.
    J.R. Stone, J.C. Miller, R. Koncewicz, P.D. Stevenson, M.R. Strayer, Phys. Rev. C 68, 034324 (2003) CrossRefADSGoogle Scholar
  16. 16.
    A.W. Steiner, B.A. Li, Phys. Rev. C 72, 041601 (2005) CrossRefADSGoogle Scholar
  17. 17.
    L.W. Chen, C.M. Ko, B.A. Li, Phys. Rev. C 72, 064309 (2005) CrossRefADSGoogle Scholar
  18. 18.
    P.F. Bedaque, T. Schafer, Nucl. Phys. A 697, 802 (2002) CrossRefADSGoogle Scholar
  19. 19.
    M.G. Alford, K. Rajagopal, F. Wlczek, Nucl. Phys. B 537, 443 (1999) CrossRefADSGoogle Scholar
  20. 20.
    J.B. Kogut, D.K. Sinclair, Phys. Rev. D 64, 034508 (2001) CrossRefADSGoogle Scholar
  21. 21.
    J.B. Kogut, D.K. Sinclair, Phys. Rev. D 70, 094501 (2004) CrossRefADSGoogle Scholar
  22. 22.
    P. de Forcrand, U. Wenger, PoS LAT 2007, 237 (2007) Google Scholar
  23. 23.
    S. Gupta, hep-lat/0202006
  24. 24.
    M.C. Birse, T.D. Cohen, J.A. McGovern, Phys. Lett. B 516, 27 (2001) CrossRefzbMATHADSGoogle Scholar
  25. 25.
    J.B. Kogut, D. Toublan, Phys. Rev. D 64, 034007 (2001) CrossRefADSGoogle Scholar
  26. 26.
    M. Loewe, C. Villavicencio, Phys. Rev. D 70, 074005 (2004) CrossRefADSGoogle Scholar
  27. 27.
    K. Splittorff, D.T. Son, M.A. Stephanov, Phys. Rev. D 64, 016003 (2001) CrossRefADSGoogle Scholar
  28. 28.
    A. Barducci, R. Casalbuoni, G. Pettini, L. Ravagli, Phys. Rev. D 71, 016011 (2005) CrossRefADSGoogle Scholar
  29. 29.
    L. He, M. Jin, P. Zhuang, Phys. Rev. D 71, 116001 (2005) CrossRefADSGoogle Scholar
  30. 30.
    L. He, P. Zhang, Phys. Lett. B 615, 93 (2005) CrossRefADSMathSciNetGoogle Scholar
  31. 31.
    M. Frank, M. Buballa, M. Oertel, Phys. Lett. B 562, 221 (2003) CrossRefADSGoogle Scholar
  32. 32.
    J.O. Andersen, T. Brauner, Phys. Rev. D 78, 014030 (2008) CrossRefADSGoogle Scholar
  33. 33.
    O. Scavenius, A. Mocsy, I.N. Mishustin, D.H. Rischke, Phys. Rev. C 64, 045202 (2001) CrossRefADSGoogle Scholar
  34. 34.
    J.O. Andersen, Phys. Rev. D 75, 065011 (2007) CrossRefADSGoogle Scholar
  35. 35.
    T.H. Phat, N. Van Thu, J. Phys. G 38, 045002 (2011) CrossRefADSGoogle Scholar
  36. 36.
    S. Wolfram, The Mathematica Book, 5th edn. (Cambridge University Press, Cambridge, 2003) Google Scholar
  37. 37.
    J. Cornwall, R. Jackiw, E. Tomboulis, Phys. Rev. D 10, 2428 (1974) CrossRefzbMATHADSGoogle Scholar
  38. 38.
    G. Amelino-Camelia, S.Y. Pi, Phys. Rev. D 47, 2356 (1993) CrossRefADSGoogle Scholar
  39. 39.
    G. Amelino-Camelia, Nucl. Phys. B 476, 255 (1996) CrossRefADSGoogle Scholar
  40. 40.
    Yu.B. Ivanov, F. Riek, J. Knoll, Phys. Rev. D 71, 105016 (2005) CrossRefADSGoogle Scholar
  41. 41.
    K. Rajagopal, F. Wilczek, Nucl. Phys. B 399, 395 (1993) CrossRefADSGoogle Scholar
  42. 42.
    K. Ogure, J. Sato, Phys. Rev. D 58, 85010 (1998) CrossRefADSGoogle Scholar
  43. 43.
    Y. Nemoto, K. Naito, M. Oka, Eur. Phys. J. A 9, 245 (2000) CrossRefzbMATHADSGoogle Scholar
  44. 44.
    T.H. Phat, N. Tuan Anh, L. Viet Hoa, Eur. Phys. J. A 19, 359 (2004) CrossRefADSGoogle Scholar
  45. 45.
    J.T. Lenaghan, D.H. Rishke, J. Phys. G 26, 431 (2000) CrossRefADSGoogle Scholar
  46. 46.
    M. Bordag, V. Skolozub, J. Phys. A 34, 461 (2001) CrossRefzbMATHADSMathSciNetGoogle Scholar
  47. 47.
    P. Arnold, O. Espinosa, Phys. Rev. D 47, 3546 (1993) CrossRefADSGoogle Scholar
  48. 48.
    D.T. Son, M.A. Stephanov, Phys. Rev. Lett. 86, 592 (2001) CrossRefADSGoogle Scholar
  49. 49.
    J.O. Andersen, L. Kyllingstad, J. Phys. G 37, 015003 (2010) CrossRefADSGoogle Scholar
  50. 50.
    D. Ebert, K.G. Klimenko, Eur. Phys. J. C 46, 771 (2006) CrossRefADSGoogle Scholar
  51. 51.
    S. Shu, J.R. Li, J. Phys. G, Nucl. Part. Phys. 31, 459 (2006) CrossRefADSGoogle Scholar
  52. 52.
    S. Shu, J.R. Li, J. Phys. G, Nucl. Part. Phys. 34, 2727 (2007) CrossRefADSGoogle Scholar
  53. 53.
    H. Mao, N. Petropoulos, W.Q. Zhao, J. Phys. G, Nucl. Part. Phys. 32, 2187 (2006) CrossRefADSGoogle Scholar
  54. 54.
    K. Splittorff, D. Toublan, J.J. Verbaarschot, Nucl. Phys. B 639, 524 (2002) CrossRefzbMATHADSGoogle Scholar
  55. 55.
    R.S. Hayama, T. Hatsuda, Rev. Mod. Phys. 82, 2949 (2010) CrossRefADSGoogle Scholar
  56. 56.
    T.H. Phat, N. Van Long, N. Tuan Anh, L. Viet Hoa, Phys. Rev. D 78, 105016 (2008) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2011

Authors and Affiliations

  1. 1.Vietnam Atomic Energy Commission 59 Ly Thuong Kiet, HanoiVietnam and Dong Do UniversityHanoiViet Nam
  2. 2.Institute for Nuclear Science and Technique, 170 Hoang Quoc Viet, Hanoi, Vietnam and Department of PhysicsHanoi University of Education IIHanoiViet Nam

Personalised recommendations