Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Radon-induced surface contaminations in low background experiments

Abstract

In low background experiments the reduction of all possible radioactive contaminants is a crucial point for detector construction. This is also true for the surface contaminants, either those introduced during the production of detector components or those introduced during handling, treatment or storage. One of the most critical issue in this field is the control of the contamination induced by 222Rn and its progenies in the environment where the detectors are assembled and stored. Radioactive atoms can stick on detector components and create a net increase of the contaminants present on their surfaces, introducing an additional—often not negligible—source of background. The reduction of this kind of contaminations can become of primary importance in the case of fully sensitive devices, like cryogenic particle detectors. In this paper the analysis on the Rn sticking factor for copper and tellurium dioxide—the two main materials used for the construction of the CUORE detector—is discussed. The diffusion of radioactive atoms inside the detector components is considered in order to evaluate the effective contribution of Rn exposure to the background counting rate of an experiment.

References

  1. 1.

    V.I. Tretyak, Yu.G. Zdesenko, At. Data Nucl. Data Tables 80, 83 (2002)

  2. 2.

    S. Elliott, P. Vogel, Annu. Rev. Nucl. Part. Sci. 52, 115 (2002)

  3. 3.

    A. Morales, J. Morales, Nucl. Phys. B, Proc. Suppl. 114, 141 (2003)

  4. 4.

    F.T. Avignone III, S.R. Elliott, J. Engel, Rev. Mod. Phys. 80, 482 (2006)

  5. 5.

    G. Jungman, M. Kamionkowski, K. Griest, Phys. Rep. 267, 195 (1996)

  6. 6.

    J.R. Primack, B. Sadoulet, D. Seckel, Annu. Rev. Nucl. Part. Sci. 38, 751 (1988)

  7. 7.

    P.F. Smith, J.D. Lewin, Phys. Rep. 187, 203 (1990)

  8. 8.

    G. Bertone, D. Hooper, J. Silk, Phys. Rep. 405, 279–390 (2005)

  9. 9.

    G. Heusser, Annu. Rev. Nucl. Part. Sci. 45, 543–590 (1995)

  10. 10.

    D.S. Leonard, P. Grinberg et al., Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 591, 490–509 (2008)

  11. 11.

    C. Bucci et al., Eur. Phys. J. A 41, 155 (2009)

  12. 12.

    E. Armengaud et al., Phys. Lett. B 687, 294–298 (2010)

  13. 13.

    C. Arnaboldi et al., Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 518, 775 (2004)

  14. 14.

    R. Ardito et al., CUORE: a cryogenic underground observatory for rare events (2005). arXiv:hep-ex/0501010

  15. 15.

    F. Ribeiro et al., Radiat. Meas. 26, 747–750 (1996)

  16. 16.

    J. Ziegler et al., SRIM, The stopping and range of ions in matter (2008)

  17. 17.

    J. Cetnar, Ann. Nucl. Energy 33, 640–645 (2006)

  18. 18.

    S. Agostinelli et al., Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 506, 250–303 (2003)

  19. 19.

    J.F. Kenney, E.S. Keeping, Math. Stat. (1951)

  20. 20.

    J.F. Kenney, E.S. Keeping, J. Math. Stat. 1, 252–285 (1962)

Download references

Author information

Correspondence to L. Pattavina.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Clemenza, M., Maiano, C., Pattavina, L. et al. Radon-induced surface contaminations in low background experiments. Eur. Phys. J. C 71, 1805 (2011). https://doi.org/10.1140/epjc/s10052-011-1805-0

Download citation

Keywords

  • Radon
  • Tellurium
  • Radon Concentration
  • 210Po Activity
  • 210Pb Activity