Advertisement

Minimal supersymmetric technicolor

Abstract

We introduce novel extensions of the Standard Model featuring a supersymmetric technicolor sector. First we consider \(\mathcal{N}=4 \) Super Yang–Mills which breaks to \(\mathcal{N}=1\) via the electroweak (EW) interactions and coupling to the MSSM. This is a well defined, economical and calculable extension of the SM involving the smallest number of fields. It constitutes an explicit example of a natural supersymmetric conformal extension of the Standard Model featuring a well defined connection to string theory. It allows us to interpolate, depending on how we break the underlying supersymmetry, between unparticle physics and Minimal Walking Technicolor. As a second alternative we consider other \(\mathcal{N} =1\) extensions of the Minimal Walking Technicolor model. The new models allow all the standard model matter fields to acquire a mass.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

References

  1. 1.

    F. Sannino, Acta Phys. Pol. B 40, 3533 (2009). arXiv:0911.0931 [hep-ph]

  2. 2.

    F. Sannino, arXiv:0804.0182 [hep-ph]

  3. 3.

    C.T. Hill, E.H. Simmons, Phys. Rep. 381, 235 (2003). Erratum-ibid. 390, 553 (2004). arXiv:hep-ph/0203079

  4. 4.

    F. Sannino, K. Tuominen, Phys. Rev. D 71, 051901 (2005). arXiv:hep-ph/0405209

  5. 5.

    D.D. Dietrich, F. Sannino, K. Tuominen, Phys. Rev. D 72, 055001 (2005). arXiv:hep-ph/0505059

  6. 6.

    M. Dine, W. Fischler, M. Srednicki, Nucl. Phys. B 189, 575 (1981)

  7. 7.

    N. Evans, F. Sannino, arXiv:hep-ph/0512080

  8. 8.

    E. Witten, Phys. Lett. B 117, 324 (1982)

  9. 9.

    D.D. Dietrich, M. Jarvinen, Phys. Rev. D 79, 057903 (2009). arXiv:0901.3528 [hep-ph]

  10. 10.

    H. Georgi, Phys. Rev. Lett. 98, 221601 (2007). arXiv:hep-ph/0703260

  11. 11.

    H. Georgi, Phys. Lett. B 650, 275 (2007). arXiv:0704.2457 [hep-ph]

  12. 12.

    S.P. Martin, arXiv:hep-ph/9709356

  13. 13.

    J.M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998). [Int. J. Theor. Phys. 38, 1113 (1999)]. arXiv:hep-th/9711200

  14. 14.

    M. Antola, M. Heikinheimo, F. Sannino, K. Tuominen, J. High Energy Phys. 1003, 050 (2010). arXiv:0910.3681 [hep-ph]

  15. 15.

    A.R. Zerwekh, Mod. Phys. Lett. A 25, 423 (2010). arXiv:0907.4690 [hep-ph]

  16. 16.

    E.H. Simmons, Nucl. Phys. B 312, 253 (1989)

  17. 17.

    A. Kagan, S. Samuel, Phys. Lett. B 270, 37 (1991)

  18. 18.

    C.D. Carone, E.H. Simmons, Nucl. Phys. B 397, 591 (1993). arXiv:hep-ph/9207273

  19. 19.

    C.D. Carone, E.H. Simmons, Y. Su, Phys. Lett. B 344, 287 (1995). arXiv:hep-ph/9410242

  20. 20.

    V. Hemmige, E.H. Simmons, Phys. Lett. B 518, 72 (2001). arXiv:hep-ph/0107117

  21. 21.

    C.D. Carone, J. Erlich, J.A. Tan, Phys. Rev. D 75, 075005 (2007). arXiv:hep-ph/0612242

  22. 22.

    R.S. Chivukula, A.G. Cohen, K.D. Lane, Nucl. Phys. B 343, 554 (1990)

  23. 23.

    S. Samuel, Nucl. Phys. B 347, 625 (1990)

  24. 24.

    M. Dine, A. Kagan, S. Samuel, Phys. Lett. B 243, 250 (1990)

  25. 25.

    A. Kagan, S. Samuel, Phys. Lett. B 252, 605 (1990)

  26. 26.

    A. Kagan, Published in Johns Hopkins Workshop (1991), pp. 217–242

  27. 27.

    B.A. Dobrescu, Nucl. Phys. B 449, 462 (1995). arXiv:hep-ph/9504399

  28. 28.

    B.A. Dobrescu, E.H. Simmons, Phys. Rev. D 59, 015014 (1999). arXiv:hep-ph/9807469

  29. 29.

    R.S. Chivukula, N.D. Christensen, B. Coleppa, E.H. Simmons, Phys. Rev. D 80, 035011 (2009). arXiv:0906.5567 [hep-ph]

  30. 30.

    M. Antola, S. Di Chiara, F. Sannino, K. Tuominen, arXiv:1009.1624 [hep-ph]

  31. 31.

    M. Petrini, Phys. Lett. B 404, 66 (1997). arXiv:hep-th/9704004

  32. 32.

    O. Antipin, M. Heikinheimo, K. Tuominen, J. High Energy Phys. 0910, 018 (2009). arXiv:0905.0622 [hep-ph]

  33. 33.

    M.T. Frandsen, I. Masina, F. Sannino, Phys. Rev. D 81, 035010 (2010). arXiv:0905.1331 [hep-ph]

  34. 34.

    O. Antipin, M. Heikinheimo, K. Tuominen, J. High Energy Phys. 1007, 052 (2010). arXiv:1002.1872 [hep-ph]

  35. 35.

    F. Sannino, R. Zwicky, Phys. Rev. D 79, 015016 (2009). arXiv:0810.2686 [hep-ph]

  36. 36.

    B.A. Dobrescu, Phys. Rev. Lett. 94, 151802 (2005). arXiv:hep-ph/0411004

  37. 37.

    C. Amsler et al. (Particle Data Group), Phys. Lett. B 667, 1 (2008)

  38. 38.

    M.E. Peskin, T. Takeuchi, Phys. Rev. Lett. 65, 964 (1990)

  39. 39.

    F. Bursa, L. Del Debbio, L. Keegan, C. Pica, T. Pickup, Phys. Lett. B 696, 374 (2011). arXiv:1007.3067 [hep-ph]

  40. 40.

    S. Catterall, L. Del Debbio, J. Giedt, L. Keegan, PoS LATTICE2010, 057 (2010). arXiv:1010.5909 [hep-ph]

  41. 41.

    O. Antipin, K. Tuominen, arXiv:0912.0674 [hep-ph]

  42. 42.

    C. Pica, F. Sannino, arXiv:1011.5917 [hep-ph]

  43. 43.

    C. Pica, F. Sannino, arXiv:1011.3832 [hep-ph]

  44. 44.

    H.S. Fukano, F. Sannino, Phys. Rev. D 82, 035021 (2010). arXiv:1005.3340 [hep-ph]

  45. 45.

    A. Strumia, arXiv:1101.2195 [hep-ph]

  46. 46.

    V. Khachatryan et al. (CMS Collaboration), arXiv:1101.1628 [hep-ex]

  47. 47.

    T.A. Collaboration, arXiv:1102.5290 [hep-ex]

  48. 48.

    R. Foadi, M.T. Frandsen, T.A. Ryttov, F. Sannino, Phys. Rev. D 76, 055005 (2007). arXiv:0706.1696 [hep-ph]

  49. 49.

    K. Nakamura et al. (Particle Data Group Collaboration), J. Phys. G 37, 075021 (2010)

  50. 50.

    H.J. He, N. Polonsky, S.f. Su, Phys. Rev. D 64, 053004 (2001). arXiv:hep-ph/0102144

  51. 51.

    S. Catterall, J. High Energy Phys. 0506, 027 (2005). arXiv:hep-lat/0503036

  52. 52.

    J.W. Elliott, J. Giedt, G.D. Moore, Phys. Rev. D 78, 081701 (2008). arXiv:0806.0013 [hep-lat]

  53. 53.

    J. Giedt, R. Brower, S. Catterall, G.T. Fleming, P. Vranas, Phys. Rev. D 79, 025015 (2009). arXiv:0810.5746 [hep-lat]

  54. 54.

    N. Dorey, S.P. Kumar, J. High Energy Phys. 0002, 006 (2000). arXiv:hep-th/0001103

  55. 55.

    J. Wess, J. Bagger, Princeton Univ. Press, Princeton (1992), 259 pp.

Download references

Author information

Correspondence to Kimmo Tuominen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Antola, M., Di Chiara, S., Sannino, F. et al. Minimal supersymmetric technicolor. Eur. Phys. J. C 71, 1784 (2011) doi:10.1140/epjc/s10052-011-1784-1

Download citation

Keywords

  • Yukawa Coupling
  • Higgs Mass
  • High Energy Phys
  • SUSY Breaking
  • Standard Model Fermion