Advertisement

The European Physical Journal C

, 71:1760 | Cite as

Observing many-body effects on lepton pair production from low mass enhancement and flow at RHIC and LHC energies

  • Sabyasachi Ghosh
  • Sourav SarkarEmail author
  • Jan-e Alam
Regular Article - Theoretical Physics

Abstract

The ρ spectral function at finite temperature calculated using the real-time formalism of thermal field theory is used to evaluate the low mass dilepton spectra. The analytic structure of the ρ propagator is studied and contributions to the dilepton yield in the region below the bare ρ peak from the different cuts in the spectral function are discussed. The space-time integrated yield shows significant enhancement in the region below the bare ρ peak in the invariant mass spectra. It is argued that the variation of the inverse slope of the transverse mass (M T ) distribution can be used as an efficient tool to predict the presence of two different phases of the matter during the evolution of the system. The sensitivities of the effective temperature obtained from the slopes of the M T spectra to the medium effects are studied.

Keywords

Invariant Mass Spectral Function Lepton Pair Invariant Mass Spectrum Inverse Slope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    I. Arsene et al. (BRAHMS Collaboration), Nucl. Phys. A 757, 1 (2005) ADSCrossRefGoogle Scholar
  2. 2.
    B.B. Back et al. (PHOBOS Collaboration), Nucl. Phys. A 757, 28 (2005) ADSCrossRefGoogle Scholar
  3. 3.
    J. Adams et al. (STAR Collaboration), Nucl. Phys. A 757, 102 (2005) ADSCrossRefGoogle Scholar
  4. 4.
    K. Adcox et al. (PHENIX Collaboration), Nucl. Phys. A 757, 184 (2005) ADSCrossRefGoogle Scholar
  5. 5.
    S.S. Adler et al. (PHENIX Collaboration), Phys. Rev. Lett. 96, 202301 (2006) ADSCrossRefGoogle Scholar
  6. 6.
    J. Adams et al. (STAR Collaboration), Phys. Rev. Lett. 91, 072304 (2003) ADSCrossRefGoogle Scholar
  7. 7.
    B.I. Abeleb et al. (STAR Collaboration), Phys. Rev. Lett. 98, 192301 (2007) ADSCrossRefGoogle Scholar
  8. 8.
    S.S. Adler et al. (PHENIX Collaboration), Phys. Rev. Lett. 96, 032301 (2006) ADSCrossRefGoogle Scholar
  9. 9.
    A. Adare et al. (PHENIX Collaboration), Phys. Rev. Lett. 98, 162301 (2007) ADSCrossRefGoogle Scholar
  10. 10.
    B.I. Abelev et al. (STAR Collaboration), Phys. Rev. C 77, 054901 (2008) ADSCrossRefGoogle Scholar
  11. 11.
    R. Arnaldi et al. (NA60 Collaboration), Phys. Rev. Lett. 100, 022302 (2008) ADSCrossRefGoogle Scholar
  12. 12.
    R. Rapp, J. Wambach, Adv. Nucl. Phys. 25, 1 (2000) CrossRefGoogle Scholar
  13. 13.
    G. Agakichiev et al. (CERES Collaboration), Phys. Lett. B 422, 405 (1998) ADSCrossRefGoogle Scholar
  14. 14.
    S. Sarkar, J. Alam, T. Hatsuda, J. Phys. G 30, 607 (2004) ADSCrossRefGoogle Scholar
  15. 15.
    H. van Hees, R. Rapp, Nucl. Phys. A 806, 339 (2008) ADSCrossRefGoogle Scholar
  16. 16.
    J. Ruppert, C. Gale, T. Renk, P. Lichard, J.I. Kapusta, Phys. Rev. Lett. 100, 162301 (2008) ADSCrossRefGoogle Scholar
  17. 17.
    A. Adare et al. (PHENIX Collaboration), Phys. Rev. C 81, 034911 (2010) ADSCrossRefGoogle Scholar
  18. 18.
    K. Dusling, I. Zahed, Nucl. Phys. A 825, 212 (2009) ADSCrossRefGoogle Scholar
  19. 19.
    E.L. Bratkovskaya, W. Cassing, O. Linnyk, Phys. Lett. B 670, 428 (2009) ADSCrossRefGoogle Scholar
  20. 20.
    A. Drees, Nucl. Phys. A 830, 435c (2009) ADSCrossRefGoogle Scholar
  21. 21.
    S. Ghosh, S. Mallik, S. Sarkar, Eur. Phys. J. C 70, 251 (2010) ADSCrossRefGoogle Scholar
  22. 22.
    R. Rapp, C. Gale, Phys. Rev. C 60, 024903 (1999) ADSCrossRefGoogle Scholar
  23. 23.
    J. Alam, S. Sarkar, P. Roy, T. Hatsuda, B. Sinha, Ann. Phys. 286, 159 (2000) ADSCrossRefGoogle Scholar
  24. 24.
    P. Huovinen, P.V. Ruuskanen, J. Sollfrank, Nucl. Phys. A 650, 227 (1999) ADSCrossRefGoogle Scholar
  25. 25.
    M. Luzum, P. Romatschke, Phys. Rev. C 78, 034915 (2008). [Erratum-ibid. C 79, 039903 (2009)] ADSCrossRefGoogle Scholar
  26. 26.
    J. Deng, Q. Wang, N. Xu, P. Zhuang, arXiv:1009.3091 [nucl-th]
  27. 27.
    L.D. McLerran, T. Toimela, Phys. Rev. D 31, 545 (1985) ADSCrossRefGoogle Scholar
  28. 28.
    J. Cleymans, J. Fingberg, K. Redlich, Phys. Rev. D 35, 2153 (1987) ADSCrossRefGoogle Scholar
  29. 29.
    E.V. Shuryak, Rev. Mod. Phys. 65, 1 (1993) ADSCrossRefGoogle Scholar
  30. 30.
    M. Le Bellac, Thermal Field Theory (Cambridge University Press, Cambridge, 2000) Google Scholar
  31. 31.
    S. Mallik, S. Sarkar, Eur. Phys. J. C 61, 489 (2009) ADSCrossRefGoogle Scholar
  32. 32.
    H. Nagahiro, L. Roca, E. Oset, Eur. Phys. J. A 36, 73 (2008) ADSCrossRefGoogle Scholar
  33. 33.
    C. Amsler et al. (Particle Data Group), Phys. Lett. B 667, 1 (2008) ADSCrossRefGoogle Scholar
  34. 34.
    R. Rapp, G. Chanfray, J. Wambach, Nucl. Phys. A 617, 472 (1997) ADSCrossRefGoogle Scholar
  35. 35.
    V.L. Eletsky, M. Belkacem, P.J. Ellis, J.I. Kapusta, Phys. Rev. C 64, 035202 (2001) ADSCrossRefGoogle Scholar
  36. 36.
    R. Rapp, J. Phys. G 34, S405 (2007) ADSCrossRefGoogle Scholar
  37. 37.
    H. van Hees, R. Rapp, Phys. Rev. Lett. 97, 102301 (2006) ADSCrossRefGoogle Scholar
  38. 38.
    R.A. Schneider, W. Weise, Phys. Lett. B 515, 89 (2001) ADSCrossRefGoogle Scholar
  39. 39.
    J.K. Nayak, J. Alam, T. Hirano, S. Sarkar, B. Sinha, arXiv:0902.0446 [nucl-th]
  40. 40.
    H. von Gersdorff, M. Kataja, L. McLerran, P.V. Ruuskanen, Phys. Rev. D 34, 794 (1986); ibid. D 34 (1986) ADSCrossRefGoogle Scholar
  41. 41.
    J.D. Bjorken, Phys. Rev. D 27, 140 (1983) ADSCrossRefGoogle Scholar
  42. 42.
    C. Bernard et al., Phys. Rev. D 75, 094505 (2007) ADSCrossRefGoogle Scholar
  43. 43.
    R.C. Hwa, K. Kajantie, Phys. Rev. D 32, 1109 (1985) ADSCrossRefGoogle Scholar
  44. 44.
    D. Khazreev, M. Nardi, Phys. Lett. B 507, 121 (2001) ADSGoogle Scholar
  45. 45.
    K. Aamodt et al. (ALICE Collaboration), Eur. Phys. J. C 68, 89 (2010) ADSCrossRefGoogle Scholar
  46. 46.
    J. Alam, J.K. Nayak, P. Roy, A.K. Dutt-Mazumder, B. Sinha, J. Phys. G 34, 871 (2007) ADSCrossRefGoogle Scholar
  47. 47.
    B.K. Patra, J. Alam, P. Roy, S. Sarkar, B. Sinha, Nucl. Phys. A 709, 440 (2002) ADSCrossRefGoogle Scholar
  48. 48.
    P. Braun-Munzinger, K. Redlich, J. Stachel, in Quark Gluon Plasma 3, ed. by R.C. Hwa, X.N. Wang (World Scientific, Singapore, 2003) Google Scholar
  49. 49.
    H. Bebie, P. Gerber, J.L. Goity, H. Leutwyler, Nucl. Phys. B 378, 95 (1992) ADSCrossRefGoogle Scholar
  50. 50.
    T. Hirano, K. Tsuda, Phys. Rev. C 66, 054905 (2002) ADSCrossRefGoogle Scholar
  51. 51.
    F. Cooper, G. Frye, Phys. Rev. D 10, 186 (1974) ADSCrossRefGoogle Scholar
  52. 52.
    K. Dusling, I. Zahed, Phys. Rev. C 80, 014902 (2009) ADSCrossRefGoogle Scholar
  53. 53.
    P. Lichard, J. Juran, Phys. Rev. D 76, 094030 (2007) ADSCrossRefGoogle Scholar
  54. 54.
    S. Damjanovic, J. Phys. G 35, 104036 (2008) ADSCrossRefGoogle Scholar
  55. 55.
    X. Nu, M. Kaneta, Nucl. Phys. A 698, 306c (2002) ADSCrossRefGoogle Scholar
  56. 56.
    T. Renk, J. Ruppert, Phys. Rev. C 77, 024907 (2008) ADSCrossRefGoogle Scholar
  57. 57.
    E. Braaten, R.D. Pisarski, T.C. Yuan, Phys. Rev. Lett. 64, 2242 (1990) ADSCrossRefGoogle Scholar
  58. 58.
    M.H. Thoma, C.T. Traxler, Phys. Rev. D, Part. Fields 56, 198 (1997) ADSCrossRefGoogle Scholar
  59. 59.
    T. Altherr, P.V. Ruuskanen, Nucl. Phys. B 380, 377 (1992) ADSCrossRefGoogle Scholar
  60. 60.
    R. Vogt, B.V. Jacak, P.L. McGaughey, P.V. Ruuskanen, Phys. Rev. D 49, 3345 (1994) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2011

Authors and Affiliations

  1. 1.Theoretical Physics DivisionVariable Energy Cyclotron CentreKolkataIndia

Personalised recommendations