Advertisement

The European Physical Journal C

, 71:1759 | Cite as

The model for self-dual chiral bosons as a Hodge theory

  • Sudhaker Upadhyay
  • Bhabani Prasad MandalEmail author
Regular Article - Theoretical Physics

Abstract

We consider (1+1) dimensional theory for a single self-dual chiral boson as a classical model for gauge theory. Using the Batalin–Fradkin–Vilkovisky (BFV) technique, the nilpotent BRST and anti-BRST symmetry transformations for this theory have been studied. In this model other forms of nilpotent symmetry transformations like co-BRST and anti-co-BRST, which leave the gauge-fixing part of the action invariant, are also explored. We show that the nilpotent charges for these symmetry transformations satisfy the algebra of the de Rham cohomological operators in differential geometry. The Hodge decomposition theorem on compact manifold is also studied in the context of conserved charges.

Keywords

Ghost Symmetry Transformation Ghost Number BRST Charge BRST Symmetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    P.A.M. Dirac, Lectures on Quantum Mechanics (Yeshiva Univ. Press, New York, 1964) Google Scholar
  2. 2.
    M. Henneaux, Phys. Rep. 126, 1 (1985) MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    M. Henneaux, C. Teitelboim, Quantization of Gauge System (Princeton University Press, Princeton, 1992) Google Scholar
  4. 4.
    K. Sundermeyer, Constrained Dynamics. Lecture Notes in Physics, vol. 169 (Springer, Berlin, 1982) zbMATHGoogle Scholar
  5. 5.
    T. Equchi, P.B. Gilkey, A. Hanson, Phys. Rep. 66, 213 (1980) MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    K. Nishijima, Prog. Theor. Phys. 80, 897 (1988) MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    K. Nishijima, Prog. Theor. Phys. 80, 905 (1988) MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    W. Kalau, J.W. van Holten, Nucl. Phys. B 361, 233 (1991) ADSCrossRefGoogle Scholar
  9. 9.
    J.W. van Holten, Phys. Rev. Lett. 64, 2863 (1990) MathSciNetADSzbMATHCrossRefGoogle Scholar
  10. 10.
    J.W. van Holten, Nucl. Phys. B 339, 158 (1990) ADSCrossRefGoogle Scholar
  11. 11.
    H. Aratyn, J. Math. Phys. 31, 1240 (1990) MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. 12.
    E. Harikumar, R.P. Malik, M. Sivakumar, J. Phys. A, Math. Gen. 33, 7149 (2000) MathSciNetADSzbMATHCrossRefGoogle Scholar
  13. 13.
    S. Gupta, R.P. Malik, Eur. Phys. J. C 58, 517 (2008) MathSciNetADSzbMATHCrossRefGoogle Scholar
  14. 14.
    S. Gupta, R.P. Malik, Eur. Phys. J. C 68, 325 (2010) ADSCrossRefGoogle Scholar
  15. 15.
    D.S. Kulshreshtha, H.J.W. Muller-Kirsten, Phys. Rev. D 45, R393 (1992) MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    P.P. Srivastva, Phys. Rev. Lett. 63, 2791 (1989) ADSCrossRefGoogle Scholar
  17. 17.
    P.P. Srivastva, Phys. Lett. B 234, 93 (1990) ADSCrossRefGoogle Scholar
  18. 18.
    R. Floreanini, R. Jackiw, Phys. Rev. Lett. 49, 1873 (1987) ADSCrossRefGoogle Scholar
  19. 19.
    V.O. Rivelles, Phys. Rev. D 45, R3329 (1992) MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    N. Marcus, J. Schwarz, Phys. Lett. B 115, 111 (1982) MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    X.G. Wen, Phys. Rev. Lett. 64, 2206 (1990) ADSCrossRefGoogle Scholar
  22. 22.
    J. Wess, B. Zumino, Phys. Lett. B 37, 95 (1971) MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    N.K. Falck, G. Kramer, Ann. Phys. 176, 330 (1987) MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    S. Weinberg, The Quantum Theory of Fields, Vol-II: Modern Applications (Cambridge Univ. Press, Cambridge, 1996) Google Scholar
  25. 25.
    P. Bracken, Int. J. Theor. Phys. 47, 3321 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    P. Bracken, arXiv:1001.2348 [math.DG]
  27. 27.
    S. Goldberg, Curvature and Homology (Dover, New York, 1970) Google Scholar
  28. 28.
    S. Morita, Geometry of Differential Forms. AMS Translations of Mathematical Monographs, vol. 209 (AMS, Providence, 2001) zbMATHGoogle Scholar
  29. 29.
    F. Warner, Foundations of Differentiable Manifolds and Lie Groups (Springer, Berlin, 1983). ISBN 978-0-387-90894-6 zbMATHGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2011

Authors and Affiliations

  1. 1.Department of PhysicsBanaras Hindu UniversityVaranasiIndia

Personalised recommendations