Advertisement

The European Physical Journal C

, 71:1755 | Cite as

Birkhoff’s theorem in f(T) gravity

  • Xin-He MengEmail author
  • Ying-Bin Wang
Regular Article - Theoretical Physics

Abstract

Generalized from the so-called teleparallel gravity, which is exactly equivalent to general relativity, f(T) gravity has been proposed as an alternative gravity model to account for the dark energy phenomena. In this letter we prove that the external vacuum gravitational field for a spherically symmetric distribution of source matter in the f(T) gravity framework must be static. The conclusion is independent of the radial distribution and spherically symmetric motion of the source matter, that is, whether it is in motion or static. As a consequence, the Birkhoff’s theorem is valid in the general nonsingular f(T) theory at the un-perturbative level. We also discuss its application in the de Sitter spacetime evolution phase as preferred by present dark energy observations.

Keywords

Dark Energy Quantum Gravity Gravity Model Source Matter Teleparallel Gravity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    G.R. Bengochea, R. Ferraro, Phys. Rev. D 79, 124019 (2009) ADSCrossRefGoogle Scholar
  2. 2.
    A. Einstein, Sitz.ber. Preuss. Akad. Wiss. Phys. Math. Kl. 217 (1928) Google Scholar
  3. 3.
    A. Einstein, Sitz.ber. Preuss. Akad. Wiss. Phys. Math. Kl. 224 (1928) Google Scholar
  4. 4.
    R. Aldrovandi, J.G. Pereira, An Introduction to Teleparallel Gravity (Instituto de Fisica Teorica, UNSEP, Sao Paulo, 2007). http://www.ift.unesp.br/gcg/tele.pdf Google Scholar
  5. 5.
    J. Garechi, (2010). arXiv:1010.2654
  6. 6.
    S. Nojiri, S.D. Odintsov, Gen. Relativ. Gravit. 36, 1765–1780 (2004) MathSciNetADSzbMATHCrossRefGoogle Scholar
  7. 7.
    S. Nojiri, S.D. Odintsov, Phys. Rep. 505, 59–144 (2011) ADSCrossRefMathSciNetGoogle Scholar
  8. 8.
    S. Nojiri, S.D. Odintsov, Int. J. Geom. Methods Mod. Phys. 4, 115 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    X.H. Meng, P. Wang, Class. Quantum Gravity 20, 4949 (2003) MathSciNetADSzbMATHCrossRefGoogle Scholar
  10. 10.
    X.H. Meng, P. Wang, Class. Quantum Gravity 21, 951 (2004) MathSciNetADSzbMATHCrossRefGoogle Scholar
  11. 11.
    X.H. Meng, P. Wang, Class. Quantum Gravity 21, 2029 (2004) MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. 12.
    X.H. Meng, P. Wang, Class. Quantum Gravity 22, 23 (2005) MathSciNetADSzbMATHCrossRefGoogle Scholar
  13. 13.
    X.H. Meng, P. Wang, Gen. Relativ. Gravit. 36, 1947 (2004) MathSciNetADSzbMATHCrossRefGoogle Scholar
  14. 14.
    X.H. Meng, P. Wang, Phys. Lett. B 584, 1 (2004) ADSCrossRefGoogle Scholar
  15. 15.
    E. Flanagan, Class. Quantum Gravity 21, 417 (2003) MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    S. Nojiri, S. Odintsov, Phys. Lett. B 576, 5 (2003) MathSciNetADSzbMATHCrossRefGoogle Scholar
  17. 17.
    S. Nojiri, S. Odintsov, Phys. Rev. D 68, 123512 (2003) MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    D. Volink, Phys. Rev. D 68, 063510 (2003) ADSCrossRefGoogle Scholar
  19. 19.
    S. Capozziello, M. Francaviglia, Gen. Relativ. Gravit. 40, 357 (2008) MathSciNetADSzbMATHCrossRefGoogle Scholar
  20. 20.
    I.L. Buchbinder, S.D. Odintsov, I.L. Shapiro, Phys. Lett. B 162, 92 (1985) ADSCrossRefGoogle Scholar
  21. 21.
    I.L. Buchbinder, S.D. Odintsov, Acta Phys. Pol. B 18, 237 (1987) Google Scholar
  22. 22.
    T. Sotiriou, V. Faraoni, Rev. Mod. Phys. 82, 451–497 (2010) MathSciNetADSzbMATHCrossRefGoogle Scholar
  23. 23.
    A. De Felice, S. Tsujikawa, Living Rev. Relativ. 13, 3 (2010) ADSGoogle Scholar
  24. 24.
    E.V. Linder, Phys. Rev. D 81, 127301 (2010) ADSCrossRefGoogle Scholar
  25. 25.
    P. Wu, H. Yu, Phys. Lett. B 693, 415–420 (2010) MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    R. Myrzakulov, (2010). arXiv:1006.1120
  27. 27.
    K.K. Yerzhanov et al., (2010). arXiv:1006.3879
  28. 28.
    R.J. Yang, (2010). arXiv:1007.3571
  29. 29.
    G.R. Bengochea, Phys. Lett. B 695, 405–411 (2011) ADSCrossRefGoogle Scholar
  30. 30.
    B.J. Li, T.P. Sotiriou, J.D. Barrow, Phys. Rev. D 83, 064035 (2011) ADSCrossRefGoogle Scholar
  31. 31.
    R.J. Yang, Europhys. Lett. 93, 60001 (2011) ADSCrossRefGoogle Scholar
  32. 32.
    G.D. Birkhoff, Relativity and Modern Physics (Harvard University Press, Cambridge, 1923) zbMATHGoogle Scholar
  33. 33.
    S. Deser, J. Franklin, Am. J. Phys. 73, 261 (2005) MathSciNetADSzbMATHCrossRefGoogle Scholar
  34. 34.
    N.V. Johansen, F. Ravndal, Gen. Relativ. Gravit. 38, 537 (2006) MathSciNetADSzbMATHCrossRefGoogle Scholar
  35. 35.
    S. Deser, Gen. Relativ. Gravit. 37, 2251 (2005) MathSciNetADSzbMATHCrossRefGoogle Scholar
  36. 36.
    S. Weinberg, Gravitation and Cosmology (Wiley, New York, 1972) Google Scholar
  37. 37.
    S. Capozziello, A. Stabile, A. Troisi, Phys. Rev. D 76, 104019 (2007) MathSciNetADSCrossRefGoogle Scholar
  38. 38.
    V. Faraoni, Phys. Rev. D 81, 044002 (2010) MathSciNetADSCrossRefGoogle Scholar
  39. 39.
    M. Harwit, Astrophysical Concepts (Springer, New York, 2006) zbMATHGoogle Scholar
  40. 40.
    P.J.E. Peebles, Principles of Physical Cosmology (Princeton University Press, Princeton, 1993) Google Scholar
  41. 41.
    J.W. Moffat, V.T. Toth, Mon. Not. R. Astron. Soc. 395, L25–L28 (2009) ADSCrossRefGoogle Scholar
  42. 42.
    F.I. Cooperstock et al., Astrophys. J. 503, 61 (1998) ADSCrossRefGoogle Scholar
  43. 43.
    V. Kagramanova et al., Phys. Lett. B 634, 465 (2006) ADSCrossRefGoogle Scholar
  44. 44.
    S.H. Chen et al., Phys. Rev. D 83, 023508 (2011) ADSCrossRefGoogle Scholar
  45. 45.
    J.B. Dent, S. Dutta, E.N. Saridakis, J. Cosmol. Astropart. Phys. 1101, 009 (2011) ADSCrossRefGoogle Scholar
  46. 46.
    Y.-F. Cai et al., arXiv:1104.4349
  47. 47.
    S. Capozziello, D. Saez-Gomez, arXiv:1107.0948 [gr-qc]

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2011

Authors and Affiliations

  1. 1.Department of PhysicsNankai UniversityTianjinChina
  2. 2.Kavli Institute of Theoretical Physics ChinaCASBeijingChina

Personalised recommendations