Advertisement

The European Physical Journal C

, 71:1754 | Cite as

Neutrinoless double-beta decay and seesaw mechanism

  • Samoil M. BilenkyEmail author
  • Amand Faessler
  • Walter Potzel
  • Fedor Šimkovic
Regular Article - Theoretical Physics

Abstract

From the standard seesaw mechanism of neutrino-mass generation, which is based on the assumption that the lepton number is violated at a large (∼1015 GeV) scale, it follows that the neutrinoless double-beta decay (0νββ-decay) is ruled by the Majorana neutrino-mass mechanism. With this notion, we derive for the inverted neutrino-mass hierarchy the allowed ranges of the half-lives of the 0νββ-decay for nuclei of experimental interest with different sets of nuclear matrix elements. The present-day results of the calculation of the 0νββ-decay nuclear matrix elements are briefly discussed. We argue that if 0νββ-decay will be observed in future experiments sensitive to the effective Majorana mass in the inverted mass hierarchy region, then a comparison of the derived ranges with measured half-lives will allow us to probe the standard seesaw mechanism assuming that future cosmological data will establish the sum of the neutrino masses to be about 0.2 eV.

Keywords

Neutrino Oscillation Majorana Mass Inverted Hierarchy Light Neutrino Mass Nuclear Matrix Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    R. Wendell et al. (Super-Kamiokande Collaboration), Phys. Rev. D 81, 09200 (2010) CrossRefGoogle Scholar
  2. 2.
    B.T. Cleveland et al. (Homestake), Astrophys. J. 496, 505 (1998) ADSCrossRefGoogle Scholar
  3. 3.
    J.N. Abdurashitov et al. (SAGE Collaboration), Phys. Rev. C 80, 015807 (2009) ADSCrossRefGoogle Scholar
  4. 4.
    W. Hampel et al. (GALLEX Collaboration), Phys. Lett. B 447, 127 (1999) ADSCrossRefGoogle Scholar
  5. 5.
    M. Altmann et al. (GNO Collaboration), Phys. Lett. B 616, 174 (2005) ADSCrossRefGoogle Scholar
  6. 6.
    P. Cravens et al. (Super-Kamiokande Collaboration), Phys. Rev. D 78, 032002 (2008) ADSCrossRefGoogle Scholar
  7. 7.
    B. Aharmim et al. (SNO Collaboration), Phys. Rev. C 81, 055504 (2010) ADSCrossRefGoogle Scholar
  8. 8.
    A. Gando et al. (The KamLAND Collaboration), Phys. Rev. D 83, 052002 (2011) ADSCrossRefGoogle Scholar
  9. 9.
    M.H. Ahn et al. (K2K Collaboration), Phys. Rev. D 74, 072003 (2006) ADSCrossRefGoogle Scholar
  10. 10.
    A. Habig et al. (MINOS Collaboration), Mod. Phys. Lett. A 25, 1219 (2010) ADSCrossRefGoogle Scholar
  11. 11.
    S.M. Bilenky, J. Hošek, S.T. Petcov, Phys. Lett. B 94, 495 (1980) ADSCrossRefGoogle Scholar
  12. 12.
    M. Gell-Mann, P. Ramond, R. Slansky, in Supergravity, ed. by F. van Nieuwenhuizen, D. Freedman (North Holland, Amsterdam, 1979), p. 315 Google Scholar
  13. 13.
    T. Yanagida, in Proc. of the Workshop on Unified Theory and the Baryon Number of the Universe (KEK, Japan, 1979) Google Scholar
  14. 14.
    R.N. Mohapatra, G. Senjanović, Phys. Rev. Lett. 44, 912 (1980) ADSCrossRefGoogle Scholar
  15. 15.
    P. Minkovski, Phys. Lett. B 67, 421 (1977) ADSCrossRefGoogle Scholar
  16. 16.
    S. Weinberg, Phys. Rev. Lett. 43, 1571 (1979) ADSCrossRefGoogle Scholar
  17. 17.
    B. Pontecorvo, J. Exp. Theor. Phys. 33, 549 (1957). [Sov. Phys. JETP 6, 429 (1958)] Google Scholar
  18. 18.
    B. Pontecorvo, J. Exp. Theor. Phys. 34, 247 (1958). [Sov. Phys. JETP 7, 172 (1958)] Google Scholar
  19. 19.
    Z. Maki, M. Nakagawa, S. Sakata, Prog. Theor. Phys. 28, 870 (1962) ADSzbMATHCrossRefGoogle Scholar
  20. 20.
    S. Davidson, E. Nardi, Y. Nir, Phys. Rep. 466, 105 (2008) ADSCrossRefGoogle Scholar
  21. 21.
    E. Ma, Phys. Rev. Lett. 81, 1171 (1998) ADSCrossRefGoogle Scholar
  22. 22.
    M. Doi, T. Kotani, E. Takasugi, Prog. Theor. Phys. 83(Suppl), 1 (1985) Google Scholar
  23. 23.
    F. Šimkovic, G. Pantis, J.D. Vergados, A. Faessler, Phys. Rev. C 60, 055502 (1999) ADSCrossRefGoogle Scholar
  24. 24.
    V.A. Rodin, A. Faessler, F. Šimkovic, P. Vogel, Phys. Rev. C 68, 044302 (2003) ADSCrossRefGoogle Scholar
  25. 25.
    V.A. Rodin, A. Faessler, F. Šimkovic, P. Vogel, Nucl. Phys. A 793, 213 (2007). Erratum A 793, 213 (2007) ADSCrossRefGoogle Scholar
  26. 26.
    F. Šimkovic, A. Faessler, V.A. Rodin, P. Vogel, J. Engel, Phys. Rev. C 77, 045503 (2008) ADSCrossRefGoogle Scholar
  27. 27.
    D.-L. Fang, A. Faessler, V. Rodin, F. Šimkovic, Phys. Rev. C 82, 051301 (2010) ADSCrossRefGoogle Scholar
  28. 28.
    J. Menéndez, A. Poves, E. Caurier, F. Nowacki, Nucl. Phys. A 818, 139 (2009) ADSCrossRefGoogle Scholar
  29. 29.
    M. Kortelainen, O. Civitarese, J. Suhonen, J. Toivanen, Phys. Lett. B 647, 128 (2007) ADSCrossRefGoogle Scholar
  30. 30.
    M. Kortelainen, J. Suhonen, Phys. Rev. C 75, 051303 (2007) ADSCrossRefGoogle Scholar
  31. 31.
    M. Kortelainen, J. Suhonen, Phys. Rev. C 76, 024315 (2007) ADSCrossRefGoogle Scholar
  32. 32.
    P.K. Rath, R. Chandra, K. Chaturvedi, P.K. Raina, J.G. Hirsch, Phys. Rev. C 82, 064310 (2010) ADSCrossRefGoogle Scholar
  33. 33.
    J. Barea, F. Iachello, Phys. Rev. C 79, 044301 (2009) ADSCrossRefGoogle Scholar
  34. 34.
    T.R. Rodriguez, G. Martinez-Pinedo, Phys. Rev. Lett. 105, 252503 (2010) ADSCrossRefGoogle Scholar
  35. 35.
    A. Escuderos, A. Faessler, V. Rodin, F. Šimkovic, J. Phys. G 37, 125108 (2010) ADSCrossRefGoogle Scholar
  36. 36.
    G.A. Miller, J.E. Spencer, Ann. Phys. 100, 562 (1976) ADSCrossRefGoogle Scholar
  37. 37.
    F. Šimkovic, A. Faessler, P. Vogel, Phys. Rev. C 77, 015502 (2009) CrossRefGoogle Scholar
  38. 38.
    A.S. Barabash, Phys. At. Nucl. 70, 1191 (2007) CrossRefGoogle Scholar
  39. 39.
    F.T. Avignone, S.R. Elliott, J. Engel, Rev. Mod. Phys. 80, 481 (2008) ADSCrossRefGoogle Scholar
  40. 40.
    S.M. Bilenky, Phys. Part. Nucl. 41, 690 (2010) CrossRefGoogle Scholar
  41. 41.
    H.V. Klapdor-Kleingrothaus, I.V. Krivosheina, Mod. Phys. Lett. A 21, 1547 (2006) ADSCrossRefGoogle Scholar
  42. 42.
    J. Jochum (GERDA Collaboration), Prog. Part. Nucl. Phys. 64, 261 (2010) ADSCrossRefGoogle Scholar
  43. 43.
    S. Schönert (GERDA Collaboration), J. Phys. Conf. Ser. 203, 012014 (2010) ADSCrossRefGoogle Scholar
  44. 44.
    L. Baudis et al. (Heidelberg-Moscow Collaboration), Phys. Rev. Lett. 83, 41 (1999) ADSCrossRefGoogle Scholar
  45. 45.
    E. Andreotti et al. (CUORE Collaboration), Astropart. Phys. 34, 822 (2011) ADSCrossRefGoogle Scholar
  46. 46.
    M. Sisti (CUORE Collaboration), J. Phys. Conf. Ser. 203, 012069 (2010) ADSCrossRefGoogle Scholar
  47. 47.
    R. Arnold et al. (NEMO Collaboration), Phys. Rev. Lett. 95, 182302 (2005) ADSCrossRefGoogle Scholar
  48. 48.
    F. Šimkovic, A. Faessler, H. Müther, V. Rodin, M. Stauf, Phys. Rev. C 79, 055501 (2009) ADSCrossRefGoogle Scholar
  49. 49.
    R. Gornea (EXO Collaboration), J. Phys. Conf. Ser. 259, 012039 (2010) ADSCrossRefGoogle Scholar
  50. 50.
    V.M. Gehman (Majorana Collaboration), J. Phys. Conf. Ser. 136, 042047 (2008) ADSCrossRefGoogle Scholar
  51. 51.
    R. Arnold et al. (SuperNEMO Collaboration), Eur. Phys. J. C 70, 927 (2010) ADSCrossRefGoogle Scholar
  52. 52.
    L. Simard, Prog. Part. Nucl. Phys. 64, 270 (2010) ADSCrossRefGoogle Scholar
  53. 53.
    Ch. Kraus et al., Prog. Part. Nucl. Phys. 64, 273 (2010) ADSCrossRefGoogle Scholar
  54. 54.
    K. Zuber, AIP Conf. Proc. 942, 101 (2007) ADSCrossRefGoogle Scholar
  55. 55.
    T. Schwetz, M. Tórtola, J.W.F. Valle, New J. Phys. 10, 113011 (2008) ADSCrossRefGoogle Scholar
  56. 56.
    K. Abe et al. (T2K Collaboration), arXiv:1106.2822 [hep-ex]
  57. 57.
    S.A. Thomas, F.B. Abdalla, O. Lahav, Phys. Rev. Lett. 105, 031301 (2010) ADSCrossRefGoogle Scholar
  58. 58.
    P.D. Serpico, Phys. Rev. Lett. 98, 171301 (2007) ADSCrossRefGoogle Scholar
  59. 59.
    K.N. Abazajian et al., arXiv:1103.5083 [astro-ph]
  60. 60.
    A. Dueck, W. Rodejohann, K. Zuber, Phys. Rev. D 83, 113010 (2011) ADSCrossRefGoogle Scholar
  61. 61.
    S. Hannestad, Prog. Part. Nucl. Phys. 65, 185 (2010) ADSCrossRefGoogle Scholar
  62. 62.
    V. Tello et al., Phys. Rev. Lett. 106, 151801 (2011) ADSCrossRefGoogle Scholar
  63. 63.
    R. Mohapatra, G. Senjanović, Phys. Rev. D 23, 165 (1981) ADSCrossRefGoogle Scholar
  64. 64.
    F. Šimkovic, J. Vergados, A. Faessler, Phys. Rev. D 82, 113015 (2010) ADSCrossRefGoogle Scholar
  65. 65.
    A. Faessler, G.L. Fogli, E. Lisi, A.M. Rotunno, F. Šimkovic, Phys. Rev. D 83, 113015 (2011) ADSCrossRefGoogle Scholar
  66. 66.
    A. Faessler, A. Meroni, S.T. Petcov, F. Šimkovic, J. Vergados, Phys. Rev. D 83, 113003 (2011) ADSCrossRefGoogle Scholar
  67. 67.
    A. Ibarra, E. Molinaro, S.T. Petcov, Phys. Rev. D 84, 013005 (2011) ADSCrossRefGoogle Scholar
  68. 68.
    G. Senjanovic, arXiv:1012.4104 [hep-ph]
  69. 69.
    A. Faessler, G.L. Fogli, E. Lisi, V. Rodin, F. Šimkovic, Phys. Rev. D 79, 053001 (2009) ADSCrossRefGoogle Scholar
  70. 70.
    A. Osipowicz et al. (KATRIN Collaboration), hep-ex/0109033
  71. 71.
    J. Angrik et al. (KATRIN Collaboration), KATRIN Design Report (2004). http://bibliothek.fzk.de/zb/berichte/FZKA7090.pdf
  72. 72.
    E.W. Otten, C. Weinheimer, Rep. Prog. Phys. 71, 086201 (2008) ADSCrossRefGoogle Scholar
  73. 73.
    E. Andreotti, et al. (MARE Collaboration), Nucl. Instrum. Methods, A 572, 208 (2007) ADSCrossRefGoogle Scholar
  74. 74.
    A. Nucciotti et al. (MARE Collaboration), arXiv:1012.2290 [hep-ex]

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2011

Authors and Affiliations

  • Samoil M. Bilenky
    • 1
    • 2
    Email author
  • Amand Faessler
    • 3
  • Walter Potzel
    • 1
  • Fedor Šimkovic
    • 2
    • 4
  1. 1.Physik-Department E15Technische Universität MünchenGarchingGermany
  2. 2.Laboratory of Theoretical PhysicsJINRDubnaRussia
  3. 3.Institute of Theoretical PhysicsUniversity of TuebingenTuebingenGermany
  4. 4.Department of Nuclear Physics and BiophysicsComenius UniversityBratislavaSlovakia

Personalised recommendations