Advertisement

The European Physical Journal C

, 71:1750 | Cite as

Factorization and infrared properties of non-perturbative contributions to DIS structure functions

  • B. I. ErmolaevEmail author
  • M. Greco
  • S. I. Troyan
Regular Article - Theoretical Physics

Abstract

In this paper we present a new derivation of QCD factorization. We deduce the k T and collinear factorizations for the DIS structure functions by consecutive reductions of a more general theoretical construction. We begin by studying the amplitude of forward Compton scattering off a hadron target, representing this amplitude as a set of convolutions of two blobs connected by the simplest, two-parton intermediate states. Each blob in the convolutions can contain both the perturbative and non-perturbative contributions. We formulate conditions for separating the perturbative and non-perturbative contributions and attributing them to the different blobs. After that the convolutions correspond to QCD factorization. Then we reduce this totally unintegrated (basic) factorization first to k T -factorization and finally to collinear factorization. In order to yield a finite expression for the Compton amplitude, the integration over the loop momentum in the basic factorization must be free of both ultraviolet and infrared singularities. This obvious mathematical requirement leads to theoretical restrictions on the non-perturbative contributions (parton distributions) to the Compton amplitude and the DIS structure functions related to the Compton amplitude through the Optical Theorem. In particular, our analysis excludes the use of the singular factors x a (with a>0) in the fits for the quark and gluon distributions because such factors contradict the integrability of the basic convolutions for the Compton amplitude. This restriction is valid for all DIS structure functions in the framework of both k T -factorization and collinear factorization if we attribute the perturbative contributions only to the upper blob. The restrictions on the non-perturbative contributions obtained in the present paper can easily be extended to other QCD processes where the factorization is exploited.

Keywords

Parton Distribution Gluon Distribution Invariant Amplitude Collinear Factorization Perturbative Contribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    D. Amati, R. Petronzio, G. Veneziano, Nucl. Phys. B 140, 54 (1978) ADSCrossRefGoogle Scholar
  2. 2.
    A.V. Efremov, A.V. Radyushkin, Teor. Mat. Fiz. 42, 147 (1980) Google Scholar
  3. 3.
    A.V. Efremov, A.V. Radyushkin, Theor. Math. Phys. 44, 573 (1980) CrossRefGoogle Scholar
  4. 4.
    A.V. Efremov, A.V. Radyushkin, Teor. Mat. Fiz. 44, 17 (1980) MathSciNetGoogle Scholar
  5. 5.
    A.V. Efremov, A.V. Radyushkin, Phys. Lett. B 63, 449 (1976) ADSCrossRefGoogle Scholar
  6. 6.
    A.V. Efremov, A.V. Radyushkin, Lett. Nuovo Cimento 19, 83 (1977) CrossRefGoogle Scholar
  7. 7.
    S. Libby, G. Sterman, Phys. Rev. D 18, 3252 (1978) ADSCrossRefGoogle Scholar
  8. 8.
    S.J. Brodsky, G.P. Lepage, Phys. Lett. B 87, 359 (1979) ADSCrossRefGoogle Scholar
  9. 9.
    S.J. Brodsky, G.P. Lepage, Phys. Rev. D 22, 2157 (1980) ADSCrossRefGoogle Scholar
  10. 10.
    J.C. Collins, D.E. Soper, Nucl. Phys. B 193, 381 (1981) ADSCrossRefGoogle Scholar
  11. 11.
    J.C. Collins, D.E. Soper, Nucl. Phys. B 194, 445 (1982) ADSCrossRefGoogle Scholar
  12. 12.
    J.C. Collins, D.E. Soper, G. Sterman, Nucl. Phys. B 250, 199 (1985) ADSCrossRefGoogle Scholar
  13. 13.
    S. Catani, M. Ciafaloni, F. Hautmann, Phys. Lett. B 242, 97 (1990) ADSCrossRefGoogle Scholar
  14. 14.
    S. Catani, M. Ciafaloni, F. Hautmann, Nucl. Phys. B 366, 135 (1991) ADSCrossRefGoogle Scholar
  15. 15.
    G. Altarelli, G. Parisi, Nucl. Phys. B 126, 297 (1977) ADSCrossRefGoogle Scholar
  16. 16.
    V.N. Gribov, L.N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972) Google Scholar
  17. 17.
    L.N. Lipatov, Sov. J. Nucl. Phys. 20, 95 (1972) Google Scholar
  18. 18.
    Yu.L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977) ADSGoogle Scholar
  19. 19.
    V.N. Gorshkov, V.N. Gribov, G.V. Frolov, L.N. Lipatov, Yad. Fiz. 6, 129 (1967) Google Scholar
  20. 20.
    V.N. Gorshkov, V.N. Gribov, G.V. Frolov, L.N. Lipatov, Yad. Fiz. 6, 361 (1967) Google Scholar
  21. 21.
    R. Kirschner, L.N. Lipatov, Zh. Èksp. Teor. Fiz. 83, 488 (1982) Google Scholar
  22. 22.
    R. Kirschner, L.N. Lipatov, Nucl. Phys. B 213, 122 (1983) ADSCrossRefGoogle Scholar
  23. 23.
    B.I. Ermolaev, M. Greco, S.I. Troyan, Acta Phys. Pol. B 38, 2243 (2007) MathSciNetADSGoogle Scholar
  24. 24.
    B.I. Ermolaev, M. Greco, S.I. Troyan, Riv. Nuovo Cimento 033, 57 (2010) Google Scholar
  25. 25.
    E.A. Kuraev, L.N. Lipatov, V.S. Fadin, Sov. Phys. JETP 44, 443 (1976) ADSGoogle Scholar
  26. 26.
    E.A. Kuraev, L.N. Lipatov, V.S. Fadin, Sov. Phys. JETP 45, 199 (1977) MathSciNetADSGoogle Scholar
  27. 27.
    I.I. Balitsky, L.N. Lipatov, Sov. J. Nucl. Phys. 28, 822 (1978) Google Scholar
  28. 28.
    M. Ciafaloni, Lect. Notes Phys. 737, 151 (2008) MathSciNetADSCrossRefGoogle Scholar
  29. 29.
    R.K. Ellis, W. Furmanski, R. Petronzio, Nucl. Phys. B 212 (1983) Google Scholar
  30. 30.
    J. Collins, in Proceedings of LIGHT CONE 2008 (2008), 028 Google Scholar
  31. 31.
    S.J. Brodsky, D.S. Hwang, B.Q. Ma, I. Schmidt, Nucl. Phys. B 593, 311 (2001) ADSzbMATHCrossRefGoogle Scholar
  32. 32.
    I.O. Cherednikov, A.I. Karanikos, N.G. Stefanis, Nucl. Phys. B 840, 379 (2010) ADSzbMATHCrossRefGoogle Scholar
  33. 33.
    T. Becher, M. Neubert, Eur. Phys. J. C 71, 1665 (2011) ADSCrossRefGoogle Scholar
  34. 34.
    V.V. Sudakov, Sov. Phys. JETP 3, 65 (1956) MathSciNetzbMATHGoogle Scholar
  35. 35.
    Yu.L. Dokshitzer, D.I. Diakonov, S.I. Troyan, Phys. Rep. 58, 269 (1980) ADSCrossRefGoogle Scholar
  36. 36.
    G. Curci, M. Greco, Phys. Lett. B 79, 406 (1978) ADSCrossRefGoogle Scholar
  37. 37.
    G. Curci, M. Greco, Y. Srivastava, Phys. Rev. Lett. 43, 834 (1979) ADSCrossRefGoogle Scholar
  38. 38.
    G. Curci, M. Greco, Phys. Lett. B 92, 175 (1980) ADSCrossRefGoogle Scholar
  39. 39.
    D. Amati, A. Bassetto, M. Ciafaloni, G. Marchesini, G. Veneziano, Nucl. Phys. B 173, 429 (1980) ADSCrossRefGoogle Scholar
  40. 40.
    A. Bassetto, M. Ciafaloni, G. Marchesini, Phys. Rep. 100, 201 (1983) ADSCrossRefGoogle Scholar
  41. 41.
    B.I. Ermolaev, M. Greco, S.I. Troyan, Phys. Lett. B 522, 57 (2001) ADSzbMATHCrossRefGoogle Scholar
  42. 42.
    B.I. Ermolaev, S.I. Troyan, Phys. Lett. B 666, 256 (2008) ADSCrossRefGoogle Scholar
  43. 43.
    B.I. Ermolaev, M. Greco, S.I. Troyan, Phys. Lett. B 622, 93 (2005) ADSCrossRefGoogle Scholar
  44. 44.
    D. Amati, R. Petronzio, G. Veneziano, Nucl. Phys. B 140, 54 (1978) ADSCrossRefGoogle Scholar
  45. 45.
    S.B. Libby, G. Sterman, Phys. Rev. D 18, 3252 (1978) ADSCrossRefGoogle Scholar
  46. 46.
    R.K. Ellis, H. Georgi, M. Machacek, H.D. Politzer, G.G. Ross, Nucl. Phys. B 152, 285 (1979) ADSCrossRefGoogle Scholar
  47. 47.
    Yu.L. Dokshitzer, V.A. Khoze, A.H. Mueller, S.I. Troyan, Basics of Perturbative QCD (Editions Frontieres, Gif-sur-Yvette, 1991) Google Scholar
  48. 48.
    A.V. Efremov, I.F. Ginzburg, Fortschr. Phys. 22, 575 (1974) CrossRefGoogle Scholar
  49. 49.
    A.V. Efremov, A.V. Radyushkin, Report JINR E2-80-521 Google Scholar
  50. 50.
    A.V. Efremov, A.V. Radyushkin, Mod. Phys. Lett. A 24, 2803 (2009) ADSzbMATHCrossRefGoogle Scholar
  51. 51.
    B.M. McCoy, T.T. Wu, Phys. Rev. D 12, 3257 (1975) ADSCrossRefGoogle Scholar
  52. 52.
    B.M. McCoy, T.T. Wu, Phys. Rev. D 13, 1076 (1976) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2011

Authors and Affiliations

  1. 1.Ioffe Physico-Technical InstituteSt. PetersburgRussia
  2. 2.Department of Physics and INFNUniversity Roma TreRomeItaly
  3. 3.St. Petersburg Institute of Nuclear PhysicsGatchinaRussia

Personalised recommendations