Advertisement

The European Physical Journal C

, 71:1745 | Cite as

A new design for the CERN-Fréjus neutrino super-beam

  • A. LonghinEmail author
Special Article - Tools for Experiment and Theory

Abstract

We present an optimization of the hadron focusing system for a low-energy high intensity conventional neutrino beam (super-beam) proposed on the basis of the HP-SPL at CERN with a beam power of 4 MW and an energy of 4.5 GeV. The far detector would be a 440 kton Water Cherenkov detector (MEMPHYS) located at a baseline of 130 km in the Fréjus site. The neutrino fluxes simulation relies on a new GEANT4 based simulation coupled with an optimization algorithm based on the maximization of the sensitivity limit on the θ 13 mixing angle. A new configuration adopting a multiple horn system with solid targets is proposed which improves the sensitivity to θ 13 and the CP violating phase δ CP.

Keywords

Solid Target Normal Hierarchy Neutrino Beam Graphite Target Positive Pion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A.E. Ball et al., Nucl. Instrum. Methods A 451, 359 (2000) ADSCrossRefGoogle Scholar
  2. 2.
    A.E. Ball et al., Nucl. Instrum. Methods A 472, 650 (2000). CERN-NUFACT-NOTE-42, CERN-OPEN-2000-339 ADSCrossRefGoogle Scholar
  3. 3.
    S. Gilardoni, CERN-THESIS-2004-046, CERN-NUFACT-NOTE-141, GENEVA-THESE-3536, Jul. 2004 Google Scholar
  4. 4.
    M. Mezzetto, J. Phys. G 29, 1781–1784 (2003) ADSCrossRefGoogle Scholar
  5. 5.
    S. Gilardoni et al., J. Phys. G 29, 1801 (2003) ADSCrossRefGoogle Scholar
  6. 6.
    J.E. Campagne, CERN-NUFACT-NOTE-138, Jul 2004 Google Scholar
  7. 7.
    J.E. Campagne, A. Cazes, Eur. Phys. J. C 45, 643 (2006) ADSCrossRefGoogle Scholar
  8. 8.
    J.E. Campagne et al., J. High Energy Phys. 0704, 003 (2007) ADSCrossRefGoogle Scholar
  9. 9.
    K.T. McDonald et al., IPAC-2010-3527-3529 Google Scholar
  10. 10.
    S. Gilardoni et al., CERN-OPEN-2001-042 Google Scholar
  11. 11.
    M. Baylac et al., CERN-2006-006 Google Scholar
  12. 12.
    O. Brunner et al., CERN-AB-2008-067 BI/RF Google Scholar
  13. 13.
    M. Aiba, CERN-AB-2008-060 BI, CERN-AB-Note-2008-048 BI Google Scholar
  14. 14.
    E. Benedetto, CERN-BE-2009-037, CERN-NUFACT-NOTE-156 Google Scholar
  15. 15.
    E. Benedetto, AIP Conf. Proc. 1222, 283–287 (2010) ADSCrossRefGoogle Scholar
  16. 16.
    A. de Bellefon et al., hep-ex/0607026
  17. 17.
    A. Longhin, AIP Conf. Proc. 1222, 339–343 (2010) ADSCrossRefGoogle Scholar
  18. 18.
    J.E. Campagne, CERN-NUFACT-NOTE-130, May 2003 Google Scholar
  19. 19.
    A.A. Aguilar-Arevalo et al., Phys. Rev. D 79, 072002 (2009) ADSCrossRefGoogle Scholar
  20. 20.
    B. Lepers et al., EUROnu-WP2-Note 10-01 Google Scholar
  21. 21.
    T. Nakadaira et al., AIP Conf. Proc. 981, 290 (2008) ADSCrossRefGoogle Scholar
  22. 22.
    A. Blondel et al., CERN-NUFACT-NOTE-53, CERN-OPEN-2000-343, Nov 2000, CERN-NUFACT-NOTE-78, Sep 2001 Google Scholar
  23. 23.
    A. Cazes, LAL-04-118, Ph.D. Thesis, Dec. 2004 Google Scholar
  24. 24.
    A. Lai et al. (NA48 Coll.), Phys. Lett. B 647, 341–350 (2007) ADSCrossRefGoogle Scholar
  25. 25.
    G. Battistoni et al., AIP Conf. Proc. 896, 31 (2007) ADSCrossRefGoogle Scholar
  26. 26.
    S. Agostinelli et al., Nucl. Instrum. Methods A 506, 250–303 (2003) ADSCrossRefGoogle Scholar
  27. 27.
    P. Huber et al., Comput. Phys. Commun. 177, 432 (2007) ADSCrossRefGoogle Scholar
  28. 28.
  29. 29.
    M.G. Catanesi et al., Nucl. Instrum. Methods A 571, 527 (2007) ADSCrossRefGoogle Scholar
  30. 30.
    M. Apollonio et al., Phys. Rev. C 80, 035208 (2009) ADSCrossRefGoogle Scholar
  31. 31.
    P. Pugnat, P. Sievers, CERN-NUFACT-NOTE-127. Dec. 2002 Google Scholar

Copyright information

© The Author(s) 2011

Authors and Affiliations

  1. 1.IrfuCEA-SaclayGif-sur-YvetteFrance

Personalised recommendations