Advertisement

The European Physical Journal C

, 71:1739 | Cite as

Dirac particles in a gravitational field

  • Pierre Gosselin
  • Hervé MohrbachEmail author
Regular Article - Theoretical Physics

Abstract

The semiclassical approximation for the Hamiltonian of Dirac particles interacting with an arbitrary gravitational field is investigated. The time dependence of the metric leads to new contributions to the in-band energy operator in comparison to previous works in the static case. In particular we find a new coupling term between the linear momentum and the spin, as well as couplings that contribute to the breaking of the particle–antiparticle symmetry.

Keywords

Energy Operator Curve Space Dirac Fermion Semiclassical Approximation Dirac Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    L.L. Foldy, S.A. Wouthuysen, Phys. Rev. 78, 29 (1950) ADSzbMATHCrossRefGoogle Scholar
  2. 2.
    Y.N. Obukhov, Phys. Rev. Lett. 86, 192 (2001) MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    Y.N. Obukhov, Fortschr. Phys. 50, 711 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Y.N. Obukhov, Phys. Rev. Lett. 89, 068903 (2002) MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    A.J. Silenko, O.V. Teryaev, Phys. Rev. D 71, 064016 (2005) ADSCrossRefGoogle Scholar
  6. 6.
    J.D. Bjorken, S.D. Drell, Relativistic Quantum Fields (McGraw-Hill, New York, 1965) zbMATHGoogle Scholar
  7. 7.
    M. Leclerc, Class. Quantum Gravity 23, 4013 (2006) MathSciNetADSzbMATHCrossRefGoogle Scholar
  8. 8.
    P. Gosselin, A. Bérard, H. Mohrbach, Phys. Rev. D 75, 084035 (2007) ADSCrossRefGoogle Scholar
  9. 9.
    P. Gosselin, A. Bérard, H. Mohrbach, Phys. Lett. A 368, 356 (2007) MathSciNetADSzbMATHCrossRefGoogle Scholar
  10. 10.
    P. Gosselin, H. Mohrbach, Eur. Phys. J. C 64, 495 (2009) MathSciNetADSzbMATHCrossRefGoogle Scholar
  11. 11.
    P. Gosselin, J. Hanssen, H. Mohrbach, Phys. Rev. D 77, 085008 (2008) ADSCrossRefGoogle Scholar
  12. 12.
    P. Gosselin, A. Bérard, H. Mohrbach, Eur. Phys. J. B 58, 137 (2007) MathSciNetADSzbMATHCrossRefGoogle Scholar
  13. 13.
    P. Gosselin, H. Mohrbach, J. Phys. A, Math. Theor. 43, 354025 (2010) MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2011

Authors and Affiliations

  1. 1.Institut Fourier, UMR 5582 CNRS-UJFUFR de Mathématiques, Université Grenoble I, BP74Saint Martin d’Hères CedexFrance
  2. 2.Groupe BioPhysStat, ICPMB-FR CNRS 2843Université Paul Verlaine-MetzMetz Cedex 3France

Personalised recommendations