Advertisement

The European Physical Journal C

, 71:1735 | Cite as

Seeking evolution of dark energy

  • Paul H. FramptonEmail author
  • Kevin J. Ludwick
Regular Article - Theoretical Physics

Abstract

We study how observationally to distinguish between a cosmological constant (CC) and an evolving dark energy with equation of state ω(Z). We focus on the value of redshift Z at which the cosmic late time acceleration begins and \(\ddot{a}(Z^{*}) = 0\). Four ω(Z) are studied, including the well-known CPL model and a new model that has advantages when describing the entire expansion era, ∞>Z>−1, such that the future 0>Z>−1 is also sensibly described. If dark energy is represented by a CC model with ω≡−1, the present ranges for Ω Λ (t 0) and Ω m (t 0) imply that Z =0.743 with 4% error. We discuss the possible implications of a model-independent measurement of Z with better accuracy.

Keywords

Dark Matter Dark Energy Dark Energy Model Starobinsky Model Extra Spatial Dimension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S. Perlmutter et al. (The Supernova Cosmology Project), Astrophys. J. 517, 565 (1999). astro-ph/9812133 ADSCrossRefGoogle Scholar
  2. 2.
    A.G. Riess et al. (Supernova Search Team), Astron. J. 116, 1009 (1998). astro-ph/9805201 ADSCrossRefGoogle Scholar
  3. 3.
    A. Friedmann, Z. Phys. 10, 377 (1922) ADSGoogle Scholar
  4. 4.
    G. Lemaître, Ann. Soc. Sci. Brux. 47A, 49 (1927) Google Scholar
  5. 5.
    H.P. Robertson, Astrophys. J. 82, 284 (1935) ADSzbMATHCrossRefGoogle Scholar
  6. 6.
    H.P. Robertson, Astrophys. J. 83, 187 (1936) ADSzbMATHCrossRefGoogle Scholar
  7. 7.
    H.P. Robertson, Astrophys. J. 83, 257 (1936) ADSzbMATHCrossRefGoogle Scholar
  8. 8.
    A.G. Walker, Proc. Lond. Math. Soc. 42, 90 (1937) CrossRefGoogle Scholar
  9. 9.
    C.L. Bennett et al. (WMAP7 Collaboration), Astrophys. J. Suppl. 192, 17 (2011). arXiv:1001.4758 [astro-ph.CO] ADSCrossRefGoogle Scholar
  10. 10.
    F.-Y. Wang, Z.-G. Gao, Chin. J. Astron. Astrophys. 6, 561 (2006). arXiv:0708.4062 [astro-ph] ADSCrossRefGoogle Scholar
  11. 11.
    M. Chevallier, D. Polarski, Int. J. Mod. Phys. D 10, 213 (2001). gr-qc/0009008v2 ADSCrossRefGoogle Scholar
  12. 12.
    E.V. Linder, Phys. Rev. Lett. 90, 091301 (2003). astro-ph/0208512v1 ADSCrossRefGoogle Scholar
  13. 13.
    A. Shafieloo, V. Sahni, A.A. Starobinsky, Phys. Rev. D 80, 101301(R) (2009). arXiv:0903.5141v4 [astro-ph.CO] ADSCrossRefGoogle Scholar
  14. 14.
    J.-M. Virey et al., Phys. Rev. D 70, 121301 (2004). astro-ph/0407452 ADSCrossRefGoogle Scholar
  15. 15.
    R.A. Daly, S.G. Diorovski, Astrophys. J. 597, 9 (2003). arXiv:astro-ph/0305197 ADSCrossRefGoogle Scholar
  16. 16.
    P.J. Steinhardt, D. Wesley, Phys. Rev. D 79, 101026 (2009). arXiv:0811.1614 [hep-th] CrossRefGoogle Scholar
  17. 17.
    P.H. Frampton, K.J. Ludwick, R.J. Scherrer, arXiv:1106.4996 [astro-ph.CO]
  18. 18.
    P.H. Frampton, K.J. Ludwick, S. Nojiri, S.D. Odintsov, R.J. Scherrer, arXiv:1108.0067 [hep-th]
  19. 19.
    P.H. Frampton, Mod. Phys. Lett. A 19, 801 (2004). hep-th/0301007 MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    C.M. Will, Was Einstein Right? Putting General Relativity to the Test (Basic Books, New York, 1993) Google Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2011

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of North CarolinaChapel HillUSA

Personalised recommendations