Advertisement

The European Physical Journal C

, 71:1731 | Cite as

A possible minimal gauge–Higgs unification

  • P. V. DongEmail author
Regular Article - Theoretical Physics
  • 54 Downloads

Abstract

A possible minimal model of the gauge–Higgs unification based on the higher dimensional spacetime M 4⊗(S 1/Z 2) and the bulk gauge symmetry SU(3) C SU(3) W U(1) X is constructed in some detail. We argue that the Weinberg angle and the electromagnetic current can be correctly identified if one introduces the extra U(1) X above and a bulk scalar triplet. The VEV of this scalar as well as the orbifold boundary conditions will break the bulk gauge symmetry down to that of the standard model. A new neutral zero-mode gauge boson Z′ exists that gains mass via this VEV. We propose a simple fermion content that is free from all the anomalies when the extra brane-localized chiral fermions are taken into account as well. The issues on recovering a standard model chiral-fermion spectrum with the masses and flavor mixing are also discussed, where we need to introduce the two other brane scalars which also contribute to the Z′ mass in the similar way as the scalar triplet. The neutrinos can get small masses via a type I seesaw mechanism. In this model, the mass of the Z′ boson and the compactification scale are very constrained being, respectively, given in the ranges: 2.7 TeV<m Z<13.6 TeV and 40 TeV<1/R<200 TeV.

Keywords

Gauge Boson Gauge Symmetry Yukawa Coupling Vacuum Expectation Value Chiral Fermion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S.P. Martin, hep-ph/9709356
  2. 2.
    L. Randall, R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999) MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. 3.
    L. Randall, R. Sundrum, Phys. Rev. Lett. 83, 4690 (1999) MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. 4.
    N. Arkani-Hamed, S. Dimopoulos, G. Dvali, Phys. Lett. B 429, 263 (1998) ADSCrossRefGoogle Scholar
  5. 5.
    I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, G. Dvali, Phys. Lett. B 436, 257 (1998) ADSCrossRefGoogle Scholar
  6. 6.
    N. Arkani-Hamed, A.G. Cohen, H. Georgi, Phys. Lett. B 513, 232 (2001) MathSciNetADSzbMATHCrossRefGoogle Scholar
  7. 7.
    N. Arkani-Hamed, A.G. Cohen, E. Katz, A.E. Nelson, J. High Energy Phys. 0207, 034 (2002) MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    D.B. Fairlie, Phys. Lett. B 82, 97 (1979) ADSCrossRefGoogle Scholar
  9. 9.
    D.B. Fairlie, J. Phys. G 5, L55 (1979) ADSCrossRefGoogle Scholar
  10. 10.
    N.S. Manton, Nucl. Phys. B 158, 141 (1979) MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    Y. Hosotani, Phys. Lett. B 126, 309 (1983) ADSCrossRefGoogle Scholar
  12. 12.
    Y. Hosotani, Phys. Lett. B 129, 193 (1983) ADSCrossRefGoogle Scholar
  13. 13.
    Y. Hosotani, Ann. Phys. 190, 233 (1989) MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    H. Hatanaka, T. Inami, C.S. Lim, Mod. Phys. Lett. A 13, 2601 (1998) ADSCrossRefGoogle Scholar
  15. 15.
    I. Antoniadis, K. Benakli, M. Quiros, New J. Phys. 3, 20 (2001) ADSCrossRefGoogle Scholar
  16. 16.
    G. von Gersdorff, N. Irges, M. Quiros, Nucl. Phys. B 635, 127 (2002) ADSzbMATHCrossRefGoogle Scholar
  17. 17.
    R. Contino, Y. Nomura, A. Pomarol, Nucl. Phys. B 671, 148 (2003) ADSzbMATHCrossRefGoogle Scholar
  18. 18.
    C.S. Lim, N. Maru, K. Hasegawa, J. Phys. Soc. Jpn. 77, 074101 (2008) ADSCrossRefGoogle Scholar
  19. 19.
    N. Maru, T. Yamashita, Nucl. Phys. B 754, 127 (2006) ADSCrossRefGoogle Scholar
  20. 20.
    Y. Hosotani, N. Maru, K. Takenaga, T. Yamashita, Prog. Theor. Phys. 118, 1053 (2007) ADSzbMATHCrossRefGoogle Scholar
  21. 21.
    Y. Kawamura, Prog. Theor. Phys. 103, 613 (2000) MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    Y. Kawamura, Prog. Theor. Phys. 105, 691 (2001) ADSzbMATHCrossRefGoogle Scholar
  23. 23.
    Y. Kawamura, Prog. Theor. Phys. 999 (2001) Google Scholar
  24. 24.
    G. Burdman, Y. Nomura, Nucl. Phys. B 656, 3 (2003) MathSciNetADSzbMATHCrossRefGoogle Scholar
  25. 25.
    C.A. Scrucca, M. Serone, L. Silvestrini, Nucl. Phys. B 669, 128 (2003) ADSCrossRefGoogle Scholar
  26. 26.
    Y. Adachi, N. Kurahashi, C.S. Lim, N. Maru, J. High Energy Phys. 1011, 150 (2010) ADSCrossRefGoogle Scholar
  27. 27.
    Y. Adachi, N. Kurahashi, C.S. Lim, N. Maru, arXiv:1103.5980
  28. 28.
    C. Csaki, C. Grojean, H. Murayama, Phys. Rev. D 67, 085012 (2003) ADSCrossRefGoogle Scholar
  29. 29.
    Y. Hosotani, S. Noda, K. Takenaga, Phys. Lett. B 607, 276 (2005) ADSCrossRefGoogle Scholar
  30. 30.
    G. Cacciapaglia, C. Csaki, S.C. Park, J. High Energy Phys. 0603, 099 (2006) ADSCrossRefGoogle Scholar
  31. 31.
    C.S. Lim, N. Maru, Phys. Rev. D 75, 115011 (2007) ADSCrossRefGoogle Scholar
  32. 32.
    N. Maru, N. Okada, Phys. Rev. D 77, 055010 (2008) ADSCrossRefGoogle Scholar
  33. 33.
    N. Maru, Mod. Phys. Lett. A 23, 2737 (2008) ADSCrossRefGoogle Scholar
  34. 34.
    Y. Adachi, C.S. Lim, N. Maru, Phys. Rev. D 76, 075009 (2007) ADSCrossRefGoogle Scholar
  35. 35.
    Y. Adachi, C.S. Lim, N. Maru, Phys. Rev. D 80, 055025 (2009) ADSCrossRefGoogle Scholar
  36. 36.
    C.S. Lim, N. Maru, K. Nishiwaki, Phys. Rev. D 81, 076006 (2010) ADSCrossRefGoogle Scholar
  37. 37.
    Y. Hosotani, M. Mabe, Phys. Lett. B 615, 257 (2005) ADSGoogle Scholar
  38. 38.
    K. Agashe, R. Contino, A. Pomarol, Nucl. Phys. B 719, 165 (2005) ADSCrossRefGoogle Scholar
  39. 39.
    Y. Sakamura, Y. Hosotani, Phys. Lett. B 645, 442 (2007) ADSCrossRefGoogle Scholar
  40. 40.
    Y. Hosotani, Y. Sakamura, Prog. Theor. Phys. 118, 935 (2007) ADSzbMATHCrossRefGoogle Scholar
  41. 41.
    A.D. Medina, N.R. Shah, C.E.M. Wagner, Phys. Rev. D 76, 095010 (2007) ADSCrossRefGoogle Scholar
  42. 42.
    Y. Hosotani, K. Oda, T. Ohnuma, Y. Sakamura, Phys. Rev. D 78, 096002 (2008) ADSCrossRefGoogle Scholar
  43. 43.
    Y. Hosotani, M. Tanaka, N. Uekusa, Phys. Rev. D 82, 115024 (2010) ADSCrossRefGoogle Scholar
  44. 44.
    A. Pomarol, M. Quiros, Phys. Lett. B 438, 255 (1998) MathSciNetADSCrossRefGoogle Scholar
  45. 45.
    H. Georgi, A.K. Grant, G. Hailu, Phys. Rev. D 63, 064027 (2001) MathSciNetADSCrossRefGoogle Scholar
  46. 46.
    N. Arkani-Hamed, A.G. Cohen, H. Georgi, Phys. Lett. B 516, 395 (2001) MathSciNetADSzbMATHCrossRefGoogle Scholar
  47. 47.
    C.A. Scrucca, M. Serone, L. Silvestrini, F. Zwirner, Phys. Lett. B 525, 169 (2002) MathSciNetADSzbMATHCrossRefGoogle Scholar
  48. 48.
    L. Pilo, A. Riotto, Phys. Lett. B 546, 135 (2002) MathSciNetADSzbMATHCrossRefGoogle Scholar
  49. 49.
    H.D. Kim, J.E. Kim, H.M. Lee, J. High Energy Phys. 0206, 048 (2002) ADSCrossRefGoogle Scholar
  50. 50.
    H.M. Lee, J. High Energy Phys. 0309, 078 (2003) ADSCrossRefGoogle Scholar
  51. 51.
    P.V. Dong, H.N. Long, Eur. Phys. J. C 42, 325 (2005) ADSCrossRefGoogle Scholar
  52. 52.
    K. Nakamura et al. (Particle Data Group). J. Phys. G 37, 075021 (2010) ADSCrossRefGoogle Scholar
  53. 53.
    P. Langacker, M. Luo, Phys. Rev. D 44, 817 (1991) ADSCrossRefGoogle Scholar
  54. 54.
    P. Langacker, M. Luo, Phys. Rev. D 45, 278 (1992) ADSCrossRefGoogle Scholar
  55. 55.
    K. Nakamura et al. (Particle Data Group), in Ref. [52], pp. 137–140 Google Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2011

Authors and Affiliations

  1. 1.Institute of PhysicsVASTHanoiVietnam
  2. 2.PH-TH DivisionCERNGeneva 23Switzerland

Personalised recommendations