Advertisement

Supersymmetry without prejudice at the LHC

  • John A. ConleyEmail author
  • James S. Gainer
  • JoAnne L. Hewett
  • My Phuong Le
  • Thomas G. Rizzo
Regular Article - Theoretical Physics

Abstract

The discovery and exploration of Supersymmetry in a model-independent fashion will be a daunting task due to the large number of soft-breaking parameters in the MSSM. In this paper, we explore the capability of the ATLAS detector at the LHC (\(\sqrt{s}=14\) TeV, 1 fb−1) to find SUSY within the 19-dimensional pMSSM subspace of the MSSM using their standard transverse missing energy and long-lived particle searches that were essentially designed for mSUGRA. To this end, we employ a set of ∼71k previously generated model points in the 19-dimensional parameter space that satisfy all of the existing experimental and theoretical constraints. Employing ATLAS-generated SM backgrounds and following their approach in each of 11 missing energy analyses as closely as possible, we explore all of these 71k model points for a possible SUSY signal. To test our analysis procedure, we first verify that we faithfully reproduce the published ATLAS results for the signal distributions for their benchmark mSUGRA model points. We then show that, requiring all sparticle masses to lie below 1(3) TeV, almost all (two-thirds) of the pMSSM model points are discovered with a significance S>5 in at least one of these 11 analyses assuming a 50% systematic error on the SM background. If this systematic error can be reduced to only 20% then this parameter space coverage is increased. These results are indicative that the ATLAS SUSY search strategy is robust under a broad class of Supersymmetric models. We then explore in detail the properties of the kinematically accessible model points which remain unobservable by these search analyses in order to ascertain problematic cases which may arise in general SUSY searches.

Keywords

Minimal Supersymmetric Standard Model Light Supersymmetric Particle Mass Splitting Standard Model Background Gluino Mass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M. Drees, R. Godbole, P. Roy, Hackensack, USA: World Scientific (2004), 555 pp. Google Scholar
  2. 2.
    H. Baer, X. Tata, Cambridge, UK: Cambridge University Press (2006), 537 pp. Google Scholar
  3. 3.
    C. Amsler et al. (Particle Data Group), Phys. Lett. B 667, 1 (2008) ADSCrossRefGoogle Scholar
  4. 4.
    E. Cremmer, P. Fayet, L. Girardello, Phys. Lett. B 122, 41 (1983) ADSCrossRefGoogle Scholar
  5. 5.
    G.F. Giudice, R. Rattazzi, Phys. Rep. 322, 419 (1999). hep-ph/9801271 ADSCrossRefGoogle Scholar
  6. 6.
    M. Dine, A.E. Nelson, Y. Nir et al., Phys. Rev. D 53, 2658 (1996). hep-ph/9507378 ADSCrossRefGoogle Scholar
  7. 7.
    L. Randall, R. Sundrum, Nucl. Phys. B 557, 79 (1999). hep-th/9810155 MathSciNetADSzbMATHCrossRefGoogle Scholar
  8. 8.
    G.F. Giudice, M.A. Luty, H. Murayama et al., J. High Energy Phys. 12, 027 (1998). hep-ph/9810442 ADSCrossRefGoogle Scholar
  9. 9.
    Z. Chacko, M.A. Luty, A.E. Nelson et al., J. High Energy Phys. 01, 003 (2000). hep-ph/9911323 ADSCrossRefGoogle Scholar
  10. 10.
    D.E. Kaplan, G.D. Kribs, M. Schmaltz, Phys. Rev. D 62, 035010 (2000). hep-ph/9911293 ADSCrossRefGoogle Scholar
  11. 11.
    V.M. Abazov et al. (D0), Phys. Lett. B 660, 449 (2008). 0712.3805 ADSCrossRefGoogle Scholar
  12. 12.
    G. Aad et al. (The ATLAS), 0901.0512 (2009)
  13. 13.
    C.F. Berger, J.S. Gainer, J.L. Hewett et al., J. High Energy Phys. 02, 023 (2009). 0812.0980 MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    J. Alwall, M.-P. Le, M. Lisanti et al., Phys. Lett. B 666, 34 (2008). 0803.0019 ADSCrossRefGoogle Scholar
  15. 15.
    J. Alwall, M.-P. Le, M. Lisanti et al., Phys. Rev. D 79, 015005 (2009). 0809.3264 ADSCrossRefGoogle Scholar
  16. 16.
    L. Pape, D. Treille, Rep. Prog. Phys. 69, 2843 (2006) ADSCrossRefGoogle Scholar
  17. 17.
    G. Weiglein et al. (LHC/LC Study Group), Phys. Rep. 426, 47 (2006). hep-ph/0410364 ADSCrossRefGoogle Scholar
  18. 18.
    R.C. Cotta, J.S. Gainer, J.L. Hewett et al., New J. Phys. 11, 105026 (2009). 0903.4409 ADSCrossRefGoogle Scholar
  19. 19.
    R.C. Cotta, J.S. Gainer, J.L. Hewett et al., Nucl. Phys. B, Proc. Suppl. 194, 133 (2009). 0909.4088 ADSCrossRefGoogle Scholar
  20. 20.
    A. Djouadi, J.-L. Kneur, G. Moultaka, Comput. Phys. Commun. 176, 426 (2007). hep-ph/0211331 ADSzbMATHCrossRefGoogle Scholar
  21. 21.
    G. D’Ambrosio, G.F. Giudice, G. Isidori et al., Nucl. Phys. B 645, 155 (2002). hep-ph/0207036 ADSCrossRefGoogle Scholar
  22. 22.
    G. Belanger, F. Boudjema, A. Pukhov et al., Comput. Phys. Commun. 177, 894 (2007) ADSzbMATHCrossRefGoogle Scholar
  23. 23.
    G. Belanger, F. Boudjema, A. Pukhov et al., Comput. Phys. Commun. 180, 747 (2009). 0803.2360 ADSzbMATHCrossRefGoogle Scholar
  24. 24.
    G. Belanger, F. Boudjema, A. Pukhov et al., Comput. Phys. Commun. 149, 103 (2002). hep-ph/0112278 ADSzbMATHCrossRefGoogle Scholar
  25. 25.
    G. Belanger, F. Boudjema, A. Pukhov et al., Comput. Phys. Commun. 174, 577 (2006). hep-ph/0405253 ADSzbMATHCrossRefGoogle Scholar
  26. 26.
    G. Belanger, F. Boudjema, A. Pukhov et al., Comput. Phys. Commun. 176, 367 (2007). hep-ph/0607059 ADSzbMATHCrossRefGoogle Scholar
  27. 27.
    W. Beenakker, R. Hopker, M. Spira, hep-ph/9611232 (1996)
  28. 28.
    W. Beenakker, R. Hopker, M. Spira et al., Nucl. Phys. B 492, 51 (1997). hep-ph/9610490 ADSGoogle Scholar
  29. 29.
    W. Beenakker, M. Kramer, T. Plehn et al., Nucl. Phys. B 515, 3 (1998). hep-ph/9710451 ADSCrossRefGoogle Scholar
  30. 30.
    W. Beenakker et al., Phys. Rev. Lett. 83, 3780 (1999). hep-ph/9906298 ADSCrossRefGoogle Scholar
  31. 31.
    M. Spira, hep-ph/0211145 (2002)
  32. 32.
    T. Plehn, Czechoslov. J. Phys. 55, B213 (2005). hep-ph/0410063 Google Scholar
  33. 33.
    A. Djouadi, M.M. Muhlleitner, M. Spira, Acta Phys. Pol. A 38, 635 (2007). hep-ph/0609292 ADSGoogle Scholar
  34. 34.
    T. Sjostrand, S. Mrenna, P.Z. Skands, J. High Energy Phys. 05, 026 (2006). hep-ph/0603175 ADSCrossRefGoogle Scholar
  35. 35.
  36. 36.
    G.J. Feldman, R.D. Cousins, Phys. Rev. D 57, 3873 (1998). physics/9711021 ADSCrossRefGoogle Scholar
  37. 37.
    T. Aaltonen et al. (CDF), Phys. Rev. Lett. 101, 251801 (2008). 0808.2446 ADSCrossRefGoogle Scholar
  38. 38.
    T. Aaltonen et al. (CDF), Phys. Rev. Lett. 101, 071802 (2008). 0802.3887 ADSCrossRefGoogle Scholar
  39. 39.
    V.M. Abazov et al. (D0), Phys. Rev. Lett. 97, 171806 (2006). hep-ex/0608013 ADSCrossRefGoogle Scholar
  40. 40.
    V. Buescher et al. (CDF and D0), hep-ex/0504004 (2005)
  41. 41.
    V.M. Abazov et al. (D0), Phys. Lett. B 665, 1 (2008). 0803.2263 ADSCrossRefGoogle Scholar
  42. 42.
    T. Aaltonen et al. (CDF), Phys. Rev. D 76, 072010 (2007). 0707.2567 ADSCrossRefGoogle Scholar
  43. 43.
    F. Abe et al. (CDF), Phys. Rev. D 46, 1889 (1992) ADSCrossRefGoogle Scholar
  44. 44.
    V.M. Abazov et al. (D0), Phys. Rev. Lett. 102, 161802 (2009). 0809.4472 ADSCrossRefGoogle Scholar
  45. 45.
    G. Benelli, UMI-31-09638 Google Scholar
  46. 46.
    LEP Electroweak Working Group, http://www.cern.ch/LEPEWWG
  47. 47.
    R. Barate et al. (ALEPH), Phys. Lett. B 469, 303 (1999) ADSCrossRefGoogle Scholar
  48. 48.
    LEP SUSY Working Group, http://lepsusy.web.cern.ch/lepsusy
  49. 49.
  50. 50.
    S. Heinemeyer, W. Hollik, G. Weiglein, Phys. Rep. 425, 265 (2006). hep-ph/0412214 ADSCrossRefGoogle Scholar
  51. 51.
    D. Feldman, Z. Liu, P. Nath, J. High Energy Phys. 04, 054 (2008). 0802.4085 ADSCrossRefGoogle Scholar
  52. 52.
    G. Aad et al. (Atlas Collaboration), 1102.5290 (2011)
  53. 53.
    V. Khachatryan et al. (CMS Collaboration), Phys. Lett. B 698, 196 (2011). 1101.1628 ADSCrossRefGoogle Scholar
  54. 54.
    S. Chatrchyan et al. (CMS Collaboration), 1107.1279 (2011)
  55. 55.
    C.H. Chen, M. Drees, J.F. Gunion, Phys. Rev. D 55, 330 (1997). hep-ph/9607421 ADSCrossRefGoogle Scholar
  56. 56.
    C.H. Chen, M. Drees, J.F. Gunion, hep-ph/9902309 (1999)
  57. 57.
    P.M. Nadolsky et al., Phys. Rev. D 78, 013004 (2008). 0802.0007 ADSCrossRefGoogle Scholar
  58. 58.
    D. Stump et al., J. High Energy Phys. 10, 046 (2003). hep-ph/0303013 ADSCrossRefGoogle Scholar
  59. 59.
    G. Corcella et al., J. High Energy Phys. 01, 010 (2001). hep-ph/0011363 ADSCrossRefGoogle Scholar
  60. 60.
    G. Corcella et al., hep-ph/0210213 (2002)
  61. 61.
    S. Moretti, K. Odagiri, P. Richardson et al., J. High Energy Phys. 04, 028 (2002). hep-ph/0204123 ADSCrossRefGoogle Scholar
  62. 62.
    L.J. Dixon, Private communication Google Scholar
  63. 63.
    A.J. Barr, C.G. Lester, 1004.2732 (2010)
  64. 64.
    I. Hinchliffe, F.E. Paige, M.D. Shapiro et al., Phys. Rev. D 55, 5520 (1997). hep-ph/9610544 ADSCrossRefGoogle Scholar
  65. 65.
    T. Robens, Talk given at SUSY2010, Bonn, Germany, 23–28 Aug. 2010 Google Scholar
  66. 66.
    M. Fairbairn et al., Phys. Rep. 438, 1 (2007). hep-ph/0611040 ADSCrossRefGoogle Scholar
  67. 67.
    A.R. Raklev, 0908.0315 (2009)
  68. 68.
    F.D. Steffen, J. Cosmol. Astropart. Phys. 0609, 001 (2006). hep-ph/0605306 ADSCrossRefGoogle Scholar
  69. 69.
    G.R. Farrar, P. Fayet, Phys. Lett. B 76, 575 (1978) ADSCrossRefGoogle Scholar
  70. 70.
    M.S. Chanowitz, S.R. Sharpe, Phys. Lett. B 126, 225 (1983) ADSCrossRefGoogle Scholar
  71. 71.
    J.L. Hewett, T.G. Rizzo, M.A. Doncheski, Phys. Rev. D 56, 5703 (1997). hep-ph/9612377 ADSCrossRefGoogle Scholar
  72. 72.
    G.R. Farrar, Phys. Rev. Lett. 53, 1029 (1984) ADSCrossRefGoogle Scholar
  73. 73.
    F. Buccella, G.R. Farrar, A. Pugliese, Phys. Lett. B 153, 311 (1985) ADSCrossRefGoogle Scholar
  74. 74.
    G.R. Farrar, Phys. Rev. D 51, 3904 (1995). hep-ph/9407401 ADSCrossRefGoogle Scholar
  75. 75.
    H. Baer, K.-M. Cheung, J.F. Gunion, Phys. Rev. D 59, 075002 (1999). hep-ph/9806361 ADSCrossRefGoogle Scholar
  76. 76.
    E.L. Berger et al., Phys. Rev. Lett. 86, 4231 (2001). hep-ph/0012001 ADSCrossRefGoogle Scholar
  77. 77.
    T. Sjostrand, P.Z. Skands, Nucl. Phys. B 659, 243 (2003). hep-ph/0212264 MathSciNetADSCrossRefGoogle Scholar
  78. 78.
    J.L. Hewett, B. Lillie, M. Masip et al., J. High Energy Phys. 09, 070 (2004). hep-ph/0408248 ADSCrossRefGoogle Scholar
  79. 79.
    A.C. Kraan, Eur. Phys. J. C 37, 91 (2004). hep-ex/0404001 ADSCrossRefGoogle Scholar
  80. 80.
    W. Kilian, T. Plehn, P. Richardson et al., Eur. Phys. J. C 39, 229 (2005). hep-ph/0408088 ADSCrossRefGoogle Scholar
  81. 81.
    R. Mackeprang, A. Rizzi, Eur. Phys. J. C 50, 353 (2007). hep-ph/0612161 ADSCrossRefGoogle Scholar
  82. 82.
    R. Mackeprang, AIP Conf. Proc. 1200, 746 (2010). 0909.5104 ADSCrossRefGoogle Scholar
  83. 83.
    M.R. Buckley, B. Echenard, D. Kahawala et al., 1008.2756 (2010)
  84. 84.
    H.E. Haber, G.L. Kane, Phys. Rep. 117, 75 (1985) ADSCrossRefGoogle Scholar
  85. 85.
    S.P. Martin, hep-ph/9709356 (1997)
  86. 86.
    D.J.H. Chung et al., Phys. Rep. 407, 1 (2005). hep-ph/0312378 ADSCrossRefGoogle Scholar
  87. 87.
    H.K. Dreiner, H.E. Haber, S.P. Martin, Phys. Rep. 494, 1 (2010). 0812.1594 MathSciNetADSCrossRefGoogle Scholar
  88. 88.
    P.Z. Skands et al., J. High Energy Phys. 07, 036 (2004). hep-ph/0311123 ADSCrossRefGoogle Scholar
  89. 89.
    R.C. Cotta, J.A. Conley, J.S. Gainer et al., 1007.5520 (2010)

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2011

Authors and Affiliations

  • John A. Conley
    • 1
    Email author
  • James S. Gainer
    • 2
    • 3
  • JoAnne L. Hewett
    • 4
  • My Phuong Le
    • 4
  • Thomas G. Rizzo
    • 4
  1. 1.Physikalisches InstitutUniversität BonnBonnGermany
  2. 2.High Energy Physics DivisionArgonne National LaboratoryArgonneUSA
  3. 3.Department of Physics and AstronomyNorthwestern UniversityEvanstonUSA
  4. 4.SLAC National Accelerator LaboratoryMenlo ParkUSA

Personalised recommendations