Advertisement

Higher-order corrections to Higgs boson decays in the MSSM with complex parameters

  • Karina E. WilliamsEmail author
  • Heidi Rzehak
  • Georg Weiglein
Regular Article - Theoretical Physics

Abstract

We discuss Higgs boson decays in the CP-violating MSSM, and examine their phenomenological impact using cross section limits from the LEP Higgs searches. This includes a discussion of the full 1-loop results for the partial decay widths of neutral Higgs bosons into lighter neutral Higgs bosons (h a h b h c ) and of neutral Higgs bosons into fermions (\(h_{a} \to f \bar{f}\)). In calculating the genuine vertex corrections, we take into account the full spectrum of supersymmetric particles and all complex phases of the supersymmetric parameters. These genuine vertex corrections are supplemented with Higgs propagator corrections incorporating the full 1-loop and the dominant 2-loop contributions, and we illustrate a method of consistently treating diagrams involving mixing with Goldstone and Z bosons. In particular, the genuine vertex corrections to the process h a h b h c are found to be very large and, where this process is kinematically allowed, can have a significant effect on the regions of the CPX benchmark scenario which can be excluded by the results of the Higgs searches at LEP. However, there remains an unexcluded region of CPX parameter space at a lightest neutral Higgs boson mass of ∼45 GeV. In the analysis, we pay particular attention to the conversion between parameters defined in different renormalisation schemes and are therefore able to make a comparison to the results found using renormalisation group improved/effective potential calculations.

Keywords

Higgs Boson Minimal Supersymmetric Standard Model Higgs Masse Decay Width Neutral Higgs Boson 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    R. Barate et al. (LEP Working Group for Higgs boson searches), Phys. Lett. B 565, 61 (2003). arXiv:hep-ex/0306033 ADSGoogle Scholar
  2. 2.
    S. Schael et al. (ALEPH), Eur. Phys. J. C 47, 547 (2006). arXiv:hep-ex/0602042 ADSCrossRefGoogle Scholar
  3. 3.
    Atlas Collaboration (2011). ATLAS-CONF-2011-005 Google Scholar
  4. 4.
    CMS Collaboration (2011). arXiv:1102.5429
  5. 5.
    M.S. Carena, J.R. Ellis, A. Pilaftsis, C.E.M. Wagner, Phys. Lett. B 495, 155 (2000). arXiv:hep-ph/0009212 ADSGoogle Scholar
  6. 6.
    T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak, G. Weiglein, Comput. Phys. Commun. 180, 1426 (2009) ADSzbMATHCrossRefGoogle Scholar
  7. 7.
    M. Frank et al., J. High Energy Phys. 02, 047 (2007). arXiv:hep-ph/0611326 ADSCrossRefGoogle Scholar
  8. 8.
    G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich, G. Weiglein, Eur. Phys. J. C 28, 133 (2003). arXiv:hep-ph/0212020 ADSCrossRefGoogle Scholar
  9. 9.
    S. Heinemeyer, W. Hollik, G. Weiglein, Eur. Phys. J. C 9, 343 (1999). arXiv:hep-ph/9812472 ADSGoogle Scholar
  10. 10.
    S. Heinemeyer, W. Hollik, G. Weiglein, Comput. Phys. Commun. 124, 76 (2000). arXiv:hep-ph/9812320 ADSzbMATHCrossRefGoogle Scholar
  11. 11.
    J.S. Lee et al., Comput. Phys. Commun. 156, 283 (2004). arXiv:hep-ph/0307377 ADSCrossRefGoogle Scholar
  12. 12.
    J.S. Lee, M. Carena, J. Ellis, A. Pilaftsis, C.E.M. Wagner, Comput. Phys. Commun. 180, 312 (2009). arXiv:0712.2360 ADSCrossRefGoogle Scholar
  13. 13.
    A. Djouadi et al., arXiv:0709.1893 (2007)
  14. 14.
    E. Accomando et al. (CLIC Physics Working Group) (2004). arXiv:hep-ph/0412251
  15. 15.
    V.D. Barger, M.S. Berger, A.L. Stange, R.J.N. Phillips, Phys. Rev. D 45, 4128 (1992) ADSGoogle Scholar
  16. 16.
    P.H. Chankowski, S. Pokorski, J. Rosiek, Nucl. Phys. B 423, 497 (1994) ADSCrossRefGoogle Scholar
  17. 17.
    S. Heinemeyer, W. Hollik, Nucl. Phys. B 474, 32 (1996). arXiv:hep-ph/9602318 ADSCrossRefGoogle Scholar
  18. 18.
    P. Osland, P.N. Pandita, Phys. Rev. D 59, 055013 (1999). arXiv:hep-ph/9806351 ADSGoogle Scholar
  19. 19.
    W. Hollik, S. Penaranda, Eur. Phys. J. C 23, 163 (2002). arXiv:hep-ph/0108245 ADSCrossRefGoogle Scholar
  20. 20.
    M.V. Dolgopolov, Y.P. Philippov (2003). arXiv:hep-ph/0310018
  21. 21.
    Y.P. Philippov, Phys. At. Nucl. 70, 1288 (2007). arXiv:hep-ph/0611260 CrossRefGoogle Scholar
  22. 22.
    K.E. Williams, G. Weiglein, Phys. Lett. B 660, 217 (2008). arXiv:0710.5320 ADSGoogle Scholar
  23. 23.
    S.Y. Choi, J.S. Lee, Phys. Rev. D 61, 015003 (1999). arXiv:hep-ph/9907496 ADSGoogle Scholar
  24. 24.
    M.S. Carena, J.R. Ellis, S. Mrenna, A. Pilaftsis, C.E.M. Wagner, Nucl. Phys. B 659, 145 (2003). arXiv:hep-ph/0211467 ADSCrossRefGoogle Scholar
  25. 25.
    U. Aglietti et al., arXiv:hep-ph/0612172 (2006)
  26. 26.
    A. Duperrin, Eur. Phys. J. C 59, 297 (2009). arXiv:0805.3624 ADSCrossRefGoogle Scholar
  27. 27.
    D. Benjamin et al. (Tevatron New Phenomena and Higgs Working Group) (2010). arXiv:1003.3363
  28. 28.
    A. Djouadi, Phys. Rep. 457, 1 (2008). arXiv:hep-ph/0503172 ADSCrossRefGoogle Scholar
  29. 29.
    M.S. Carena, D. Garcia, U. Nierste, C.E.M. Wagner, Nucl. Phys. B 577, 88 (2000). arXiv:hep-ph/9912516 ADSCrossRefGoogle Scholar
  30. 30.
    S. Heinemeyer, W. Hollik, G. Weiglein, Eur. Phys. J. C 16, 139 (2000). arXiv:hep-ph/0003022 ADSCrossRefGoogle Scholar
  31. 31.
    A. Dabelstein, Nucl. Phys. B 456, 25 (1995). arXiv:hep-ph/9503443 ADSCrossRefGoogle Scholar
  32. 32.
    A. Djouadi, J. Kalinowski, M. Spira, Comput. Phys. Commun. 108, 56 (1998). arXiv:hep-ph/9704448 ADSzbMATHCrossRefGoogle Scholar
  33. 33.
    W. Frisch, H. Eberl, H. Hlucha (2010). arXiv:1012.5025
  34. 34.
    P.H. Chankowski, S. Pokorski, J. Rosiek, Nucl. Phys. B 423, 437 (1994). arXiv:hep-ph/9303309 ADSCrossRefGoogle Scholar
  35. 35.
    V. Driesen, W. Hollik, J. Rosiek, Z. Phys. C 71, 259 (1996). arXiv:hep-ph/9512441 ADSGoogle Scholar
  36. 36.
    V. Driesen, W. Hollik, Z. Phys. C 68, 485 (1995). arXiv:hep-ph/9504335 ADSGoogle Scholar
  37. 37.
    A.G. Akeroyd, A. Arhrib, M. Capdequi Peyranere, Phys. Rev. D 64, 075007 (2001). arXiv:hep-ph/0104243 ADSGoogle Scholar
  38. 38.
    S. Heinemeyer, W. Hollik, J. Rosiek, G. Weiglein, Eur. Phys. J. C 19, 535 (2001). arXiv:hep-ph/0102081 ADSCrossRefGoogle Scholar
  39. 39.
    M. Beccaria, A. Ferrari, F.M. Renard, C. Verzegnassi (2005). arXiv:hep-ph/0506274
  40. 40.
    D.A. Demir, Phys. Lett. B 465, 177 (1999). arXiv:hep-ph/9809360 ADSGoogle Scholar
  41. 41.
    M.S. Carena, J.R. Ellis, A. Pilaftsis, C.E.M. Wagner, Nucl. Phys. B 586, 92 (2000). arXiv:hep-ph/0003180 ADSCrossRefGoogle Scholar
  42. 42.
    A.G. Akeroyd, A. Arhrib, Phys. Rev. D 64, 095018 (2001). arXiv:hep-ph/0107040 ADSGoogle Scholar
  43. 43.
    A. Arhrib, Phys. Rev. D 67, 015003 (2003). arXiv:hep-ph/0207330 ADSGoogle Scholar
  44. 44.
    S.W. Ham, S.G. Jo, S.K. Oh, D. Son (2007). arXiv:0711.3951
  45. 45.
    V. Buescher, K. Jakobs, Int. J. Mod. Phys. A 20, 2523 (2005). arXiv:hep-ph/0504099 CrossRefGoogle Scholar
  46. 46.
    M. Schumacher (2004). arXiv:hep-ph/0410112
  47. 47.
    E. Accomando et al. (2006). arXiv:hep-ph/0608079
  48. 48.
    A.G. Akeroyd, Phys. Rev. D 68, 077701 (2003). arXiv:hep-ph/0306045 ADSGoogle Scholar
  49. 49.
    D.K. Ghosh, R.M. Godbole, D.P. Roy, Phys. Lett. B 628, 131 (2005). arXiv:hep-ph/0412193 ADSGoogle Scholar
  50. 50.
    K. Cheung, J. Song, Q.S. Yan, Phys. Rev. Lett. 99, 031801 (2007). arXiv:hep-ph/0703149 ADSCrossRefGoogle Scholar
  51. 51.
    P. Bandyopadhyay, A. Datta, A. Datta, B. Mukhopadhyaya, Phys. Rev. D 78, 015017 (2008). arXiv:0710.3016 ADSGoogle Scholar
  52. 52.
    M. Carena, T. Han, G.Y. Huang, C.E.M. Wagner, J. High Energy Phys. 04, 092 (2008). arXiv:0712.2466 ADSCrossRefGoogle Scholar
  53. 53.
    A.C. Fowler, G. Weiglein, J. High Energy Phys. 01, 108 (2010). arXiv:0909.5165 ADSCrossRefGoogle Scholar
  54. 54.
    P. Draper, T. Liu, C.E.M. Wagner, Phys. Rev. D 81, 015014 (2010). arXiv:0911.0034 ADSGoogle Scholar
  55. 55.
    P. Bandyopadhyay (2010). arXiv:1008.3339
  56. 56.
    S.P. Das, M. Drees, Phys. Rev. D 83, 035003 (2011). arXiv:1010.3701 ADSGoogle Scholar
  57. 57.
    P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein, K.E. Williams, Comput. Phys. Commun. 181, 138 (2010). arXiv:0811.4169 ADSzbMATHCrossRefGoogle Scholar
  58. 58.
    P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein, K.E. Williams (2011). arXiv:1102.1898
  59. 59.
    T.F. Feng, Phys. Rev. D 70, 096012 (2004). arXiv:hep-ph/0405192 ADSGoogle Scholar
  60. 60.
    S.Y. Choi, M. Drees, J.S. Lee, Phys. Lett. B 481, 57 (2000). arXiv:hep-ph/0002287 ADSGoogle Scholar
  61. 61.
    A. Pilaftsis, Phys. Lett. B 435, 88 (1998). arXiv:hep-ph/9805373 ADSGoogle Scholar
  62. 62.
    A. Pilaftsis, C.E.M. Wagner, Nucl. Phys. B 553, 3 (1999). arXiv:hep-ph/9902371 ADSCrossRefGoogle Scholar
  63. 63.
    J.F. Gunion, H.E. Haber, G. Kane, S. Dawson, The Higgs Hunter’s Guide (Addison Wesley, Reading, 1990) Google Scholar
  64. 64.
    Tevatron Electroweak Working Group (2009). arXiv:0903.2503
  65. 65.
    Y. Li, S. Profumo, M. Ramsey-Musolf, J. High Energy Phys. 08, 062 (2010). arXiv:1006.1440 ADSCrossRefGoogle Scholar
  66. 66.
    A. Djouadi, Phys. Rep. 459, 1 (2008). arXiv:hep-ph/0503173 ADSCrossRefGoogle Scholar
  67. 67.
    S. Heinemeyer, Int. J. Mod. Phys. A 21, 2659 (2006). arXiv:hep-ph/0407244 ADSzbMATHCrossRefGoogle Scholar
  68. 68.
    S. Heinemeyer, W. Hollik, G. Weiglein, Phys. Rep. 425, 265 (2006). arXiv:hep-ph/0412214 ADSCrossRefGoogle Scholar
  69. 69.
    J.R. Ellis, G. Ridolfi, F. Zwirner, Phys. Lett. B 257, 83 (1991) ADSGoogle Scholar
  70. 70.
    Y. Okada, M. Yamaguchi, T. Yanagida, Prog. Theor. Phys. 85, 1 (1991) ADSCrossRefGoogle Scholar
  71. 71.
    H.E. Haber, R. Hempfling, Phys. Rev. Lett. 66, 1815 (1991) ADSCrossRefGoogle Scholar
  72. 72.
    A. Brignole, Phys. Lett. B 281, 284 (1992) ADSGoogle Scholar
  73. 73.
    P.H. Chankowski, S. Pokorski, J. Rosiek, Phys. Lett. B 286, 307 (1992) ADSGoogle Scholar
  74. 74.
    A. Dabelstein, Z. Phys. C 67, 495 (1995). arXiv:hep-ph/9409375 ADSGoogle Scholar
  75. 75.
    S. Heinemeyer, W. Hollik, G. Weiglein, Phys. Lett. B 455, 179 (1999). arXiv:hep-ph/9903404 ADSGoogle Scholar
  76. 76.
    S. Heinemeyer, W. Hollik, H. Rzehak, G. Weiglein, Eur. Phys. J. C 39, 465 (2005). arXiv:hep-ph/0411114 ADSCrossRefGoogle Scholar
  77. 77.
    M.S. Carena et al., Nucl. Phys. B 580, 29 (2000). arXiv:hep-ph/0001002 ADSCrossRefGoogle Scholar
  78. 78.
    R.J. Zhang, Phys. Lett. B 447, 89 (1999). arXiv:hep-ph/9808299 ADSGoogle Scholar
  79. 79.
    J.R. Espinosa, R.J. Zhang, J. High Energy Phys. 03, 026 (2000). arXiv:hep-ph/9912236 ADSCrossRefGoogle Scholar
  80. 80.
    G. Degrassi, P. Slavich, F. Zwirner, Nucl. Phys. B 611, 403 (2001). arXiv:hep-ph/0105096 ADSCrossRefGoogle Scholar
  81. 81.
    R. Hempfling, A.H. Hoang, Phys. Lett. B 331, 99 (1994). arXiv:hep-ph/9401219 ADSGoogle Scholar
  82. 82.
    A. Brignole, G. Degrassi, P. Slavich, F. Zwirner, Nucl. Phys. B 631, 195 (2002). arXiv:hep-ph/0112177 ADSGoogle Scholar
  83. 83.
    J.R. Espinosa, R.J. Zhang, Nucl. Phys. B 586, 3 (2000). arXiv:hep-ph/0003246 ADSCrossRefGoogle Scholar
  84. 84.
    J.R. Espinosa, I. Navarro, Nucl. Phys. B 615, 82 (2001). arXiv:hep-ph/0104047 ADSCrossRefGoogle Scholar
  85. 85.
    A. Brignole, G. Degrassi, P. Slavich, F. Zwirner, Nucl. Phys. B 643, 79 (2002). arXiv:hep-ph/0206101 ADSCrossRefGoogle Scholar
  86. 86.
    A. Dedes, G. Degrassi, P. Slavich, Nucl. Phys. B 672, 144 (2003). arXiv:hep-ph/0305127 ADSCrossRefGoogle Scholar
  87. 87.
    M.S. Carena, J.R. Espinosa, M. Quiros, C.E.M. Wagner, Phys. Lett. B 355, 209 (1995). arXiv:hep-ph/9504316 ADSGoogle Scholar
  88. 88.
    M.S. Carena, M. Quiros, C.E.M. Wagner, Nucl. Phys. B 461, 407 (1996). arXiv:hep-ph/9508343 ADSCrossRefGoogle Scholar
  89. 89.
    J.A. Casas, J.R. Espinosa, M. Quiros, A. Riotto, Nucl. Phys. B 436, 3 (1995). arXiv:hep-ph/9407389 ADSCrossRefGoogle Scholar
  90. 90.
    R. Hempfling, Phys. Rev. D 49, 6168 (1994) ADSGoogle Scholar
  91. 91.
    L.J. Hall, R. Rattazzi, U. Sarid, Phys. Rev. D 50, 7048 (1994). arXiv:hep-ph/9306309 ADSGoogle Scholar
  92. 92.
    M.S. Carena, M. Olechowski, S. Pokorski, C.E.M. Wagner, Nucl. Phys. B 426, 269 (1994). arXiv:hep-ph/9402253 ADSCrossRefGoogle Scholar
  93. 93.
    H. Eberl, K. Hidaka, S. Kraml, W. Majerotto, Y. Yamada, Phys. Rev. D 62, 055006 (2000). arXiv:hep-ph/9912463 ADSGoogle Scholar
  94. 94.
    J. Guasch, P. Häfliger, M. Spira, Phys. Rev. D 68, 115001 (2003). arXiv:hep-ph/0305101 ADSGoogle Scholar
  95. 95.
    S.P. Martin, Phys. Rev. D 65, 116003 (2002). arXiv:hep-ph/0111209 ADSGoogle Scholar
  96. 96.
    S.P. Martin, Phys. Rev. D 66, 096001 (2002). arXiv:hep-ph/0206136 ADSGoogle Scholar
  97. 97.
    S.P. Martin, Phys. Rev. D 67, 095012 (2003). arXiv:hep-ph/0211366 ADSGoogle Scholar
  98. 98.
    S.P. Martin, Phys. Rev. D 68, 075002 (2003). arXiv:hep-ph/0307101 ADSGoogle Scholar
  99. 99.
    S.P. Martin, Phys. Rev. D 70, 016005 (2004). arXiv:hep-ph/0312092 ADSGoogle Scholar
  100. 100.
    S.P. Martin, Phys. Rev. D 71, 016012 (2005). arXiv:hep-ph/0405022 ADSGoogle Scholar
  101. 101.
    S.P. Martin, Phys. Rev. D 71, 116004 (2005). arXiv:hep-ph/0502168 ADSGoogle Scholar
  102. 102.
    S.P. Martin, D.G. Robertson, Comput. Phys. Commun. 174, 133 (2006). arXiv:hep-ph/0501132 ADSzbMATHCrossRefGoogle Scholar
  103. 103.
    R.V. Harlander, P. Kant, L. Mihaila, M. Steinhauser, Phys. Rev. Lett. 100, 191602 (2008). arXiv:0803.0672 ADSCrossRefGoogle Scholar
  104. 104.
    S.P. Martin, Phys. Rev. D 75, 055005 (2007). arXiv:hep-ph/0701051 ADSGoogle Scholar
  105. 105.
    P. Kant, R.V. Harlander, L. Mihaila, M. Steinhauser, J. High Energy Phys. 08, 104 (2010). arXiv:1005.5709 ADSCrossRefGoogle Scholar
  106. 106.
    D.A. Demir, Phys. Rev. D 60, 055006 (1999). arXiv:hep-ph/9901389 ADSGoogle Scholar
  107. 107.
    T. Ibrahim, P. Nath, Phys. Rev. D 63, 035009 (2001). arXiv:hep-ph/0008237 ADSGoogle Scholar
  108. 108.
    T. Ibrahim, P. Nath, Phys. Rev. D 66, 015005 (2002). arXiv:hep-ph/0204092 ADSGoogle Scholar
  109. 109.
    S. Heinemeyer, Eur. Phys. J. C 22, 521 (2001). arXiv:hep-ph/0108059 ADSCrossRefGoogle Scholar
  110. 110.
    S. Heinemeyer, W. Hollik, H. Rzehak, G. Weiglein, Phys. Lett. B 652, 300 (2007). arXiv:0705.0746 ADSGoogle Scholar
  111. 111.
    S. Heinemeyer, W. Hollik, G. Weiglein, Phys. Rev. D 58, 091701 (1998). arXiv:hep-ph/9803277 ADSGoogle Scholar
  112. 112.
    S. Heinemeyer, W. Hollik, G. Weiglein, Phys. Lett. B 440, 296 (1998). arXiv:hep-ph/9807423 ADSGoogle Scholar
  113. 113.
    M. Frank, S. Heinemeyer, W. Hollik, G. Weiglein, arXiv:hep-ph/0212037 (2002)
  114. 114.
    T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak, G. Weiglein, K. Williams, Pramana 69, 861 (2007). arXiv:hep-ph/0611373 ADSCrossRefGoogle Scholar
  115. 115.
    T. Banks, Nucl. Phys. B 303, 172 (1988) ADSCrossRefGoogle Scholar
  116. 116.
    D. Noth, M. Spira, Phys. Rev. Lett. 101, 181801 (2008). arXiv:0808.0087 ADSCrossRefGoogle Scholar
  117. 117.
    D. Noth, M. Spira (2010). arXiv:1001.1935
  118. 118.
    S. Dittmaier, M. Krämer, A. Mück, T. Schlüter, J. High Energy Phys. 03, 114 (2007). arXiv:hep-ph/0611353 ADSCrossRefGoogle Scholar
  119. 119.
    J. Küblbeck, M. Böhm, A. Denner, Comput. Phys. Commun. 60, 165 (1990) ADSCrossRefGoogle Scholar
  120. 120.
    T. Hahn, Comput. Phys. Commun. 140, 418 (2001). arXiv:hep-ph/0012260 ADSzbMATHCrossRefGoogle Scholar
  121. 121.
    T. Hahn, C. Schappacher, Comput. Phys. Commun. 143, 54 (2002). arXiv:hep-ph/0105349 ADSzbMATHCrossRefGoogle Scholar
  122. 122.
    T. Hahn, M. Perez-Victoria, Comput. Phys. Commun. 118, 153 (1999). arXiv:hep-ph/9807565 ADSCrossRefGoogle Scholar
  123. 123.
    E. Braaten, J.P. Leveille, Phys. Rev. D 22, 715 (1980) ADSGoogle Scholar
  124. 124.
    R. Barate et al. (ALEPH), Phys. Lett. B 495, 1 (2000). arXiv:hep-ex/0011045 ADSGoogle Scholar
  125. 125.
    A. Heister et al. (ALEPH), Phys. Lett. B 526, 191 (2002). arXiv:hep-ex/0201014 ADSGoogle Scholar
  126. 126.
    P. Abreu et al. (DELPHI), Phys. Lett. B 499, 23 (2001). arXiv:hep-ex/0102036 ADSGoogle Scholar
  127. 127.
    J. Abdallah et al. (DELPHI), Eur. Phys. J. C 32, 145 (2004). arXiv:hep-ex/0303013 ADSCrossRefGoogle Scholar
  128. 128.
    M. Acciarri et al. (L3), Phys. Lett. B 495, 18 (2000). arXiv:hep-ex/0011043 ADSGoogle Scholar
  129. 129.
    G. Abbiendi et al. (OPAL), Phys. Lett. B 499, 38 (2001). arXiv:hep-ex/0101014 ADSGoogle Scholar
  130. 130.
    G. Abbiendi et al. (OPAL), Eur. Phys. J. C 26, 479 (2003). arXiv:hep-ex/0209078 ADSCrossRefGoogle Scholar
  131. 131.
    J.S. Lee, S. Scopel, Phys. Rev. D 75, 075001 (2007). arXiv:hep-ph/0701221 ADSGoogle Scholar
  132. 132.
    P. Bechtle, Private communication Google Scholar
  133. 133.
    K.E. Williams, The Higgs sector of the complex minimal supersymmetric standard model. PhD thesis, Durham University (2008). Available at: http://www.ippp.dur.ac.uk/Research/theses.html
  134. 134.
    N. Baro, F. Boudjema, A. Semenov, Phys. Rev. D 78, 115003 (2008). arXiv:0807.4668 ADSGoogle Scholar
  135. 135.
    A. Freitas, D. Stöckinger, Phys. Rev. D 66, 095014 (2002). arXiv:hep-ph/0205281 ADSGoogle Scholar
  136. 136.
    M. Steinhauser, Phys. Lett. B 429, 158 (1998). arXiv:hep-ph/9803313 ADSGoogle Scholar
  137. 137.
    K. Hagiwara, A.D. Martin, D. Nomura, T. Teubner, Phys. Rev. D 69, 093003 (2004). arXiv:hep-ph/0312250 ADSGoogle Scholar
  138. 138.
    T. Hahn, S. Heinemeyer, G. Weiglein, Nucl. Phys. B 652, 229 (2003). arXiv:hep-ph/0211204 ADSCrossRefGoogle Scholar
  139. 139.
    A. Fowler, Higher-order and CP-violating effects in the neutralino and Higgs boson sectors of the MSSM. PhD thesis, Durham University (2010). Available at: http://etheses.dur.ac.uk/449/

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2011

Authors and Affiliations

  • Karina E. Williams
    • 1
    Email author
  • Heidi Rzehak
    • 2
  • Georg Weiglein
    • 3
  1. 1.Bethe Center for Theoretical PhysicsPhysikalisches Institut der Universität BonnBonnGermany
  2. 2.Physikalisches Institut Albert-Ludwigs-Universität FreiburgFreiburg im BreisgauGermany
  3. 3.DESYHamburgGermany

Personalised recommendations