Advertisement

On the mass spectrum of noncommutative Schwinger model in Euclidean ℝ2 space

  • F. Ardalan
  • M. Ghasemkhani
  • N. SadooghiEmail author
Regular Article - Theoretical Physics

Abstract

The mass spectrum of noncommutative QED in two-dimensional Euclidean ℝ2 space is derived first in a perturbative approach at one-loop level and then in a nonperturbative approach using the equivalent bosonized noncommutative effective action. It turns out that the mass spectrum of noncommutative QED in two dimensions reduces to a single non-interacting meson with mass \(M_{\gamma}=\frac{g}{\sqrt{\pi}}\), as in commutative Schwinger model.

Keywords

High Energy Phys Fuzzy Sphere Photon Mass Photon Propagator Noncommutative Gauge Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A. Connes, M.R. Douglas, A.S. Schwarz, Noncommutative geometry and matrix theory: Compactification on tori. J. High Energy Phys. 9802, 003 (1998). arXiv:hep-th/9711162 ADSCrossRefMathSciNetGoogle Scholar
  2. 2.
    N. Seiberg, E. Witten, String theory and noncommutative geometry. J. High Energy Phys. 9909, 032 (1999). arXiv:hep-th/9908142 ADSCrossRefMathSciNetGoogle Scholar
  3. 3.
    H. Weyl, Quantum mechanics and group theory. Z. Phys. 46, 1 (1927) ADSCrossRefGoogle Scholar
  4. 4.
    H.J. Groenewold, On the principles of elementary quantum mechanics. Physica 12, 405–460 (1946) ADSzbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    J.E. Moyal, Quantum mechanics as a statistical theory. Proc. Camb. Philos. Soc. 45, 99 (1949) zbMATHCrossRefMathSciNetADSGoogle Scholar
  6. 6.
    J.Z. Simon, Higher derivative Lagrangians, nonlocality, problems and solutions. Phys. Rev. D 41, 3720 (1990) ADSCrossRefMathSciNetGoogle Scholar
  7. 7.
    N. Seiberg, L. Susskind, N. Toumbas, Space/time non-commutativity and causality. J. High Energy Phys. 0006, 044 (2000). arXiv:hep-th/0005015 ADSCrossRefMathSciNetGoogle Scholar
  8. 8.
    N. Seiberg, L. Susskind, N. Toumbas, Strings in background electric field, space/time noncommutativity and a new noncritical string theory. J. High Energy Phys. 0006, 021 (2000). arXiv:hep-th/0005040 ADSCrossRefMathSciNetGoogle Scholar
  9. 9.
    M. Chaichian, A. Demichev, P. Presnajder, A. Tureanu, Space-time noncommutativity, discreteness of time and unitarity. Eur. Phys. J. C 20, 767–772 (2001). arXiv:hep-th/0007156 ADSzbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    L. Alvarez-Gaume, J.L.F. Barbon, R. Zwicky, Remarks on time space noncommutative field theories. J. High Energy Phys. 0105, 057 (2001). arXiv:hep-th/0103069 ADSCrossRefMathSciNetGoogle Scholar
  11. 11.
    O. Aharony, J. Gomis, T. Mehen, On theories with lightlike noncommutativity. J. High Energy Phys. 0009, 023 (2000). arXiv:hep-th/0006236 ADSCrossRefMathSciNetGoogle Scholar
  12. 12.
    S. Minwalla, M. Van Raamsdonk, N. Seiberg, Noncommutative perturbative dynamics. J. High Energy Phys. 0002, 020 (2000). arXiv:hep-th/9912072 ADSCrossRefGoogle Scholar
  13. 13.
    J. Gomis, T. Mehen, Space-time noncommutative field theories and unitarity. Nucl. Phys. B 591, 265 (2000). arXiv:hep-th/0005129 ADSzbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    D. Bahns, S. Doplicher, K. Fredenhagen, G. Piacitelli, On the unitarity problem in space/time noncommutative theories. Phys. Lett. B 533, 178 (2002). arXiv:hep-th/0201222 ADSzbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    D. Bahns, S. Doplicher, K. Fredenhagen, G. Piacitelli, Ultraviolet finite quantum field theory on quantum spacetime. Commun. Math. Phys. 237, 221 (2003). arXiv:hep-th/0301100 ADSzbMATHMathSciNetGoogle Scholar
  16. 16.
    D. Bahns, S. Doplicher, K. Fredenhagen, G. Piacitelli, Field Theory on noncommutative spacetimes: Quasiplanar Wick products. Phys. Rev. D 71, 025022 (2005). arXiv:hep-th/0408204 ADSCrossRefMathSciNetGoogle Scholar
  17. 17.
    K. Fujikawa, Path integral for space-time noncommutative field theory. Phys. Rev. D 70, 085006 (2004). arXiv:hep-th/0406128 ADSCrossRefMathSciNetGoogle Scholar
  18. 18.
    M. Ghasemkhani, N. Sadooghi, Perturbative quantization of two-dimensional space-time noncommutative QED. Phys. Rev. D 81, 045014 (2010). arXiv:0911.3461 [hep-th] ADSCrossRefGoogle Scholar
  19. 19.
    T. Salminen, A. Tureanu, Noncommutative time in Quantum Field Theory. arXiv:1101.4798 [hep-th]
  20. 20.
    J.S. Schwinger, Gauge invariance and mass. II. Phys. Rev. 128, 2425 (1962) ADSzbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    K.G. Klimenko, Three-dimensional Gross–Neveu model at nonzero temperature and in an external magnetic field. Z. Phys. C 54, 323 (1992) ADSCrossRefMathSciNetGoogle Scholar
  22. 22.
    V.P. Gusynin, V.A. Miransky, I.A. Shovkovy, Dimensional reduction and catalysis of dynamical symmetry breaking by a magnetic field. Nucl. Phys. B 462, 249 (1996). arXiv:hep-ph/9509320 ADSCrossRefGoogle Scholar
  23. 23.
    A.J. Salim, N. Sadooghi, Dynamics of O(N) model in a strong magnetic background field as a modified noncommutative field theory. Phys. Rev. D 73, 065023 (2006). arXiv:hep-th/0602023 ADSCrossRefMathSciNetGoogle Scholar
  24. 24.
    E.V. Gorbar, V.A. Miransky, Relativistic field theories in a magnetic background as noncommutative field theories. Phys. Rev. D 70, 105007 (2004). arXiv:hep-th/0407219 ADSCrossRefMathSciNetGoogle Scholar
  25. 25.
    G. ’t Hooft, A two-dimensional model for mesons. Nucl. Phys. B 75, 461 (1974) ADSCrossRefMathSciNetGoogle Scholar
  26. 26.
    A. Armoni, Y. Frishman, J. Sonnenschein, Massless QCD(2) from current constituents. Nucl. Phys. B 596, 459–470 (2001). arXiv:hep-th/0011043 ADSzbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    A. Saha, A. Rahaman, P. Mukherjee, Schwinger model in noncommutating space-time. Phys. Lett. B 638, 292–295 (2006). arXiv:hep-th/0603050 ADSCrossRefMathSciNetGoogle Scholar
  28. 28.
    A. Saha, P. Mukherjee, A. Rahaman, On the question of deconfinement in noncommutative Schwinger model. Mod. Phys. Lett. A 23, 2947–2955 (2008). arXiv:hep-th/0611059 ADSzbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    E. Harikumar, Schwinger model on fuzzy sphere. arXiv:0907.3020 [hep-th]
  30. 30.
    H. Blas, H.L. Carrion, Noncommutative (generalized) sine-Gordon/massive Thirring correspondence, integrability and solitons. arXiv:1011.1604 [hep-th]
  31. 31.
    E. Abdalla, M.C.B. Abdalla, K.D. Rothe, Nonperturbative Methods in Two-Dimensional Quantum Field Theory (Singapore, World Scientific, 1991) CrossRefGoogle Scholar
  32. 32.
    E. Abdalla, M.C.B. Abdalla, Updating QCD in two dimensions. Phys. Rep. 265, 253 (1996). arXiv:hep-th/9503002 ADSCrossRefMathSciNetGoogle Scholar
  33. 33.
    E.F. Moreno, F.A. Schaposnik, Wess–Zumino–Witten and fermion models in noncommutative space. Nucl. Phys. B 596, 439–458 (2001). arXiv:hep-th/0008118 ADSzbMATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    F. Ardalan, N. Sadooghi, Anomaly and nonplanar diagrams in noncommutative gauge theories. Int. J. Mod. Phys. A 17, 123 (2002). arXiv:hep-th/0009233 ADSzbMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    F. Ardalan, N. Sadooghi, Axial anomaly in non-commutative QED on R**4. Int. J. Mod. Phys. A 16, 3151 (2001). arXiv:hep-th/0002143 ADSzbMATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    A. Armoni, E. Lopez, S. Theisen, Nonplanar anomalies in noncommutative theories and the Green–Schwarz mechanism. J. High Energy Phys. 0206, 050 (2002). arXiv:hep-th/0203165 ADSCrossRefMathSciNetGoogle Scholar
  37. 37.
    F.T. Brandt, A.K. Das, J. Frenkel, General structure of the photon self-energy in non-commutative QED. Phys. Rev. D 65, 085017 (2002). arXiv:hep-th/0112127 ADSCrossRefGoogle Scholar
  38. 38.
    A. Polyakov, P.B. Wiegmann, Theory of non-Abelian Goldstone bosons. Phys. Lett. B 131, 121 (1983) ADSCrossRefMathSciNetGoogle Scholar
  39. 39.
    A. Polyakov, P.B. Wiegmann, Goldstone fields in two-dimensions with multivalued actions. Phys. Lett. B 141, 223 (1984) ADSCrossRefMathSciNetGoogle Scholar
  40. 40.
    E. Witten, Non-Abelian bosonization in two dimensions. Commun. Math. Phys. 92, 445 (1984) ADSCrossRefMathSciNetGoogle Scholar
  41. 41.
    H. Sugawara, A field theory of currents. Phys. Rev. 170, 1659 (1968) ADSCrossRefGoogle Scholar
  42. 42.
    A. Das, J. Frenkel, On the energy-momentum tensor in non-commutative gauge theories. Phys. Rev. D 67, 067701 (2003). arXiv:hep-th/0212122 ADSCrossRefMathSciNetGoogle Scholar
  43. 43.
    F. Ardalan, H. Arfaei, N. Sadooghi, On the anomalies and Schwinger terms in noncommutative gauge theories. Int. J. Mod. Phys. A 21, 4161 (2006). arXiv:hep-th/0507230 ADSzbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2011

Authors and Affiliations

  1. 1.Department of PhysicsSharif University of TechnologyTehranIran
  2. 2.School of PhysicsInstitute for Studies in Theoretical Physics and Mathematics (IPM)TehranIran
  3. 3.School of Particles and AcceleratorsInstitute for Studies in Theoretical Physics and Mathematics (IPM)TehranIran

Personalised recommendations