Advertisement

AdS solutions in gauge supergravities and the global anomaly for the product of complex two-cycles

  • A. A. Bytsenko
  • E. ElizaldeEmail author
Regular Article - Theoretical Physics

Abstract

Cohomological methods are applied for the special set of solutions corresponding to rotating branes in arbitrary dimensions, AdS black holes (which can be embedded in ten or eleven dimensions), and gauge supergravities. A new class of solutions is proposed, the Hilbert modular varieties, which consist of the 2n-fold product of the two-spaces H n /Γ (where H n denotes the product of n upper half-planes, H 2, equipped with the co-compact action of ΓSL(2,ℝ) n ) and (H n )/Γ (where (H 2)=H 2∪{cusp of Γ} and Γ is a congruence subgroup of SL(2,ℝ) n ). The cohomology groups of the Hilbert variety, which inherit a Hodge structure (in the sense of Deligne), are analyzed, as well as bifiltered sequences, weight and Hodge filtrations, and it is argued that the torsion part of the cuspidal cohomology is involved in the global anomaly condition. Indeed, in the presence of the cuspidal part, all cohomology classes can be mapped to the boundary of the space and the cuspidal contribution can be involved in the global anomaly condition.

Keywords

Black Hole High Energy Phys Black Hole Solution Cohomology Group Hodge Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    E. Verlinde, On the holographic principle in a radiation dominated universe. arXiv:hep-th/0008140v2
  2. 2.
    R.-G. Cai, Cardy–Verlinde formula and AdS black holes. Phys. Rev. D 63, 124018 (2001) MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    S. Nojiri, S.D. Odintsov, S. Ogushi, Friedmann-Robertson-Walker brane cosmological equations from the five-dimensional bulk (A)dS black hole. Int. J. Mod. Phys. A 17, 4809 (2002) MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. 4.
    G.W. Gibbons, M.J. Perry, C.N. Pope, AdS/CFT Casimir energy for rotating black holes. Phys. Rev. Lett. 95, 231601 (2005) MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    Y.S. Myung, Entanglement system, Casimir energy and black hole. Phys. Lett. B 636, 324 (2006) MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    M. Cvetič, M.J. Duff, P. Hoxha, J. T Liu, H. Lu, J.X. Lu, R. Martinez-Acosta, C.N. Pope, H. Sati, T.A. Tran, Embedding AdS black holes in ten and eleven dimensions. Nucl. Phys. B 558, 96 (1999). arXiv:hep-th/9903214 ADSzbMATHCrossRefGoogle Scholar
  7. 7.
    A.A. Bytsenko, M.E.X. Guimarães, J.A. Helayël-Neto, Hyperbolic space forms and orbifold compactification in M-theory, in PoS WC2004 (2004), p. 017. arXiv:hep-th/0502031 Google Scholar
  8. 8.
    A.A. Bytsenko, Global anomaly and a family of structures on fold product of complex two-cycles, in Geometrical Methods in Physics. Proceedings of the XXVIII Workshop on Geometrical Methods in Physics, vol. 1191 (AIP, New York, 2009), p. 59. arXiv:0910.5178 [hep-th] Google Scholar
  9. 9.
    N. Kim, AdS(3) solutions of IIB supergravity from D3-branes. J. High Energy Phys. 0601, 094 (2006). arXiv:hep-th/0511029 ADSCrossRefGoogle Scholar
  10. 10.
    N. Kim, J.D. Park, Comments on AdS(2) solutions of D=11 supergravity. J. High Energy Phys. 0609, 041 (2006). arXiv:hep-th/0607093 ADSCrossRefGoogle Scholar
  11. 11.
    M. Cvetic, M.J. Duff, P. Hoxha, J.T. Liu, H. Lü, Embedding AdS black holes in ten and eleven dimensions. Nucl. Phys. B 558, 96 (1999). arXiv:hep-th/9903214 ADSzbMATHCrossRefGoogle Scholar
  12. 12.
    E. Freitag, Hilbert Modular Forms (Springer, Berlin, 1990) zbMATHGoogle Scholar
  13. 13.
    M. Cvetič, D. Youm, Rotating intersecting M-branes. Nucl. Phys. B 499, 253 (1997). arXiv:hep-th/9612229 ADSCrossRefGoogle Scholar
  14. 14.
    J.P. Gauntlett, N. Kim, D. Waldram, Supersymmetric AdS3,AdS2 and bubble solutions. J. High Energy Phys. 0704, 005 (2007). arXiv:hep-th/0612253 MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    M.J. Duff, J.T. Liu, Anti-de Sitter black holes in gauged N=8 supergravity. Nucl. Phys. B 554, 237 (1999). arXiv:hep-th/9901149 MathSciNetADSzbMATHCrossRefGoogle Scholar
  16. 16.
    E. Bergshoeff, E. Sezgin, P. Townsend, Supermembranes and eleven-dimensional supergravity. Phys. Lett. B 189, 75 (1987) MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    M.J. Duff, K.S. Stelle, Multi-membrane solutions of D=11 supergravity. Phys. Lett. B 253, 113 (1991) MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    J.P. Gauntlett, O.A.P. Mac Conamhna, T. Mateos, D. Waldram, New supersymmetric AdS3 solutions. Phys. Rev. D 74, 106007 (2006). arXiv:hep-th/0608055 MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    Y. Matsushima, G. Shimura, On the cohomology groups attached to certain vector valued differential forms on the product of the upper half planes. Ann. Math. 78, 417 (1963) MathSciNetCrossRefGoogle Scholar
  20. 20.
    P. Deligne, Théorie de Hodge. I, II. Publ. Math. IHÉS 40, 5 (1971) MathSciNetzbMATHGoogle Scholar
  21. 21.
    J. Evslin, H. Sati, Can D-branes wrap nonrepresentable cycles? J. High Energy Phys. 0610, 050 (2006). arXiv:hep-th/0607045 MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    J.M. Maldacena, G.W. Moore, N. Seiberg, D-Brane instantons and K-theory charges. J. High Energy Phys. 0111, 062 (2001). arXiv:hep-th/0108100 MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    P. Bouwknegt, J. Evslin, V. Mathai, T-Duality: topology change from H-flux. Commun. Math. Phys. 249, 383–415 (2004). arXiv:hep-th/0306062 MathSciNetADSzbMATHCrossRefGoogle Scholar
  24. 24.
    A.A. Bytsenko, Homology and K-theory methods for classes of branes wrapping nontrivial cycles. J. Phys. A, Math. Gen. 41, 045402 (2008). arXiv:0710.0305 [hep-th] MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    L. Bonora, A.A. Bytsenko, Fluxes, brane charges and Chern morphisms of hyperbolic geometry. Class. Quantum Gravity 23, 3895 (2006). arXiv:hep-th/0602162 MathSciNetADSzbMATHCrossRefGoogle Scholar
  26. 26.
    M.F. Atiyah, F. Hirzebruch, Vector bundles and homogeneous spaces. Proc. Symp. Pure Math. 3, 53 (1961) Google Scholar
  27. 27.
    J. Rosenberg, Continuous trace algebras from the bundle theoretic point of view. J. Aust. Math. Soc. 47, 368 (1989) zbMATHCrossRefGoogle Scholar
  28. 28.
    O. Bergman, E. Gimon, S. Sugimoto, Orientifolds, RR torsion, and K-theory. J. High Energy Phys. 0105, 047 (2001). arXiv:hep-th/0103183 MathSciNetADSCrossRefGoogle Scholar
  29. 29.
    B.A. Dubrovin, A.T. Fomenko, S.P. Novikov, Modern Geometry—Methods and Applications, Part III. Introduction to Homology Theory. Graduate Texts in Mathematics, vol. 124 (Springer, Berlin, 1984) Google Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2011

Authors and Affiliations

  1. 1.Departamento de FísicaUniversidade Estadual de LondrinaLondrina-ParanáBrazil
  2. 2.Consejo Superior de Investigaciones Científicas (ICE/CSIC) and Institut d’Estudis Espacials de Catalunya (IEEC), Facultat de CiènciesUniversitat Autònoma de BarcelonaBellaterra (Barcelona)Spain

Personalised recommendations