Single-top Wt-channel production matched with parton showers using the POWHEG method

Abstract

We present results for the next-to-leading order calculation of single-top Wt-channel production interfaced to Shower Monte Carlo programs, implemented according to the POWHEG method. A comparison with MC@NLO is carried out. Results obtained using the PYTHIA shower are also shown and the effect of typical cuts is briefly discussed.

References

  1. 1.

    T. Aaltonen et al. (CDF Collaboration), First observation of electroweak single top quark production. Phys. Rev. Lett. 103, 092002 (2009). arXiv:0903.0885 [hep-ex]

    Article  ADS  Google Scholar 

  2. 2.

    V.M. Abazov et al. (D0 Collaboration), Observation of single top-quark production. Phys. Rev. Lett. 103, 092001 (2009). arXiv:0903.0850 [hep-ex]

    Article  ADS  Google Scholar 

  3. 3.

    J. Alwall et al., Is V(tb)=1? Eur. Phys. J. C 49, 791 (2007). arXiv:hep-ph/0607115

    Article  ADS  Google Scholar 

  4. 4.

    G. Mahlon, S.J. Parke, Improved spin basis for angular correlation studies in single top quark production at the Tevatron. Phys. Rev. D 55, 7249 (1997). arXiv:hep-ph/9611367

    Article  ADS  Google Scholar 

  5. 5.

    G. Mahlon, S.J. Parke, Single top quark production at the LHC: Understanding spin. Phys. Lett. B 476, 323 (2000). arXiv:hep-ph/9912458

    Article  ADS  Google Scholar 

  6. 6.

    T.M.P. Tait, C.P.P. Yuan, Single top quark production as a window to physics beyond the standard model. Phys. Rev. D 63, 014018 (2001). arXiv:hep-ph/0007298

    Article  ADS  Google Scholar 

  7. 7.

    Q.H.P. Cao, J. Wudka, C.P. Yuan, Search for New Physics via Single Top Production at the LHC. Phys. Lett. B 658, 50 (2007). arXiv:0704.2809 [hep-ph]

    Article  ADS  Google Scholar 

  8. 8.

    M. Dittmar, H.K. Dreiner, How to find a Higgs boson with a mass between 155-GeV–180-GeV at the LHC. Phys. Rev. D 55, 167 (1997). arXiv:hep-ph/9608317

    Article  ADS  Google Scholar 

  9. 9.

    G. Bordes, B. van Eijk, Calculating QCD corrections to single top production in hadronic interactions. Nucl. Phys. B 435, 23 (1995)

    Article  ADS  Google Scholar 

  10. 10.

    W.T. Giele, S. Keller, E. Laenen, QCD corrections to W boson plus heavy quark production at the Tevatron. Phys. Lett. B 372, 141 (1996). arXiv:hep-ph/9511449

    Article  ADS  Google Scholar 

  11. 11.

    T. Stelzer, Z. Sullivan, S. Willenbrock, Single top quark production via W—gluon fusion at next-to-leading order. Phys. Rev. D 56, 5919 (1997). arXiv:hep-ph/9705398

    Article  ADS  Google Scholar 

  12. 12.

    B.W. Harris, E. Laenen, L. Phaf, Z. Sullivan, S. Weinzierl, The Fully differential single top quark cross-section in next to leading order QCD. Phys. Rev. D 66, 054024 (2002). arXiv:hep-ph/0207055

    Article  ADS  Google Scholar 

  13. 13.

    S. Zhu, Next-to-leading order QCD corrections to b g → t W—at the CERN large hadron collider. Phys. Lett. B 524, 283 (2002). Erratum Phys. Lett. B 537, 351 (2002)

    Article  ADS  Google Scholar 

  14. 14.

    J.M. Campbell, R.K. Ellis, F. Tramontano, Single top production and decay at next-to-leading order. Phys. Rev. D 70, 094012 (2004). arXiv:hep-ph/0408158

    Article  ADS  Google Scholar 

  15. 15.

    J.M. Campbell, F. Tramontano, Next-to-leading order corrections to W t production and decay. Nucl. Phys. B 726, 109 (2005). arXiv:hep-ph/0506289

    Article  MATH  ADS  Google Scholar 

  16. 16.

    Q.H. Cao, R. Schwienhorst, C.P. Yuan, Next-to-leading order corrections to single top quark production and decay at Tevatron. 1. s channel process. Phys. Rev. D 71, 054023 (2005). arXiv:hep-ph/0409040

    Article  ADS  Google Scholar 

  17. 17.

    Q.H. Cao, R. Schwienhorst, J.A. Benitez, R. Brock, C.P. Yuan, Next-to-leading order corrections to single top quark production and decay at the Tevatron: 2. t channel process. Phys. Rev. D 72, 094027 (2005). arXiv:hep-ph/0504230

    Article  ADS  Google Scholar 

  18. 18.

    N. Kidonakis, Single top production at the Tevatron: Threshold resummation and finite-order soft gluon corrections. Phys. Rev. D 74, 114012 (2006). arXiv:hep-ph/0609287

    Article  ADS  Google Scholar 

  19. 19.

    J.M. Campbell, R. Frederix, F. Maltoni, F. Tramontano, Next-to-leading-order predictions for t-channel single-top production at hadron colliders. Phys. Rev. Lett. 102, 182003 (2009). arXiv:0903.0005 [hep-ph]

    Article  ADS  Google Scholar 

  20. 20.

    J.M. Campbell, R. Frederix, F. Maltoni, F. Tramontano, NLO predictions for t-channel production of single top and fourth generation quarks at hadron colliders. J. High Energy Phys. 0910, 042 (2009). arXiv:0907.3933 [hep-ph]

    Article  ADS  Google Scholar 

  21. 21.

    S. Frixione, B.R. Webber, Matching NLO QCD computations and parton shower simulations. J. High Energy Phys. 0206, 029 (2002). arXiv:hep-ph/0204244

    Article  ADS  Google Scholar 

  22. 22.

    P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms. J. High Energy Phys. 0411, 040 (2004). arXiv:hep-ph/0409146

    Article  ADS  Google Scholar 

  23. 23.

    S. Frixione, P. Nason, C. Oleari, Matching NLO QCD computations with Parton Shower simulations: the POWHEG method. J. High Energy Phys. 0711, 070 (2007). arXiv:0709.2092 [hep-ph]

    Article  ADS  Google Scholar 

  24. 24.

    Z. Nagy, D.E. Soper, Matching parton showers to NLO computations. J. High Energy Phys. 0510, 024 (2005). arXiv:hep-ph/0503053

    Article  ADS  Google Scholar 

  25. 25.

    W.T. Giele, D.A. Kosower, P.Z. Skands, A simple shower and matching algorithm. Phys. Rev. D 78, 014026 (2008). arXiv:0707.3652 [hep-ph]

    Article  ADS  Google Scholar 

  26. 26.

    N. Lavesson, L. Lonnblad, Extending CKKW-merging to one-loop matrix elements. J. High Energy Phys. 0812, 070 (2008). arXiv:0811.2912 [hep-ph]

    Article  ADS  Google Scholar 

  27. 27.

    O. Latunde-Dada, S. Gieseke, B. Webber, A positive-weight next-to-leading-order Monte Carlo for e+e annihilation to hadrons. J. High Energy Phys. 0702, 051 (2007). arXiv:hep-ph/0612281

    Article  ADS  Google Scholar 

  28. 28.

    O. Latunde-Dada, Herwig Monte Carlo at next-to-leading order for e + e annihilation and lepton pair production. J. High Energy Phys. 0711, 040 (2007). arXiv:0708.4390 [hep-ph]

    Article  ADS  Google Scholar 

  29. 29.

    O. Latunde-Dada, Applying the POWHEG method to top pair production and decays at the ILC. Eur. Phys. J. C 58, 543 (2008). arXiv:0806.4560 [hep-ph]

    Article  ADS  Google Scholar 

  30. 30.

    S. Frixione, P. Nason, B.R. Webber, Matching NLO QCD and parton showers in heavy flavour production. J. High Energy Phys. 0308, 007 (2003). arXiv:hep-ph/0305252

    Article  ADS  Google Scholar 

  31. 31.

    S. Frixione, E. Laenen, P. Motylinski, B.R. Webber, Single-top production in MC@NLO. J. High Energy Phys. 0603, 092 (2006). arXiv:hep-ph/0512250

    Article  ADS  Google Scholar 

  32. 32.

    P. Nason, G. Ridolfi, A positive-weight next-to-leading-order Monte Carlo for Z pair hadroproduction. J. High Energy Phys. 0608, 077 (2006). arXiv:hep-ph/0606275

    Article  ADS  Google Scholar 

  33. 33.

    S. Frixione, P. Nason, G. Ridolfi, A positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction. J. High Energy Phys. 0709, 126 (2007). arXiv:0707.3088 [hep-ph]

    Article  ADS  Google Scholar 

  34. 34.

    S. Alioli, P. Nason, C. Oleari, E. Re, NLO vector-boson production matched with shower in POWHEG. J. High Energy Phys. 0807, 060 (2008). arXiv:0805.4802 [hep-ph]

    Article  ADS  Google Scholar 

  35. 35.

    K. Hamilton, P. Richardson, J. Tully, A positive-weight next-to-leading order Monte Carlo simulation of Drell-Yan vector boson production. J. High Energy Phys. 0810, 015 (2008). arXiv:0806.0290 [hep-ph]

    Article  ADS  Google Scholar 

  36. 36.

    S. Frixione, E. Laenen, P. Motylinski, B.R. Webber, C.D. White, Single-top hadroproduction in association with a W boson. J. High Energy Phys. 0807, 029 (2008). arXiv:0805.3067 [hep-ph]

    Article  ADS  Google Scholar 

  37. 37.

    S. Alioli, P. Nason, C. Oleari, E. Re, NLO Higgs boson production via gluon fusion matched with shower in POWHEG. J. High Energy Phys. 0904, 002 (2009). arXiv:0812.0578 [hep-ph]

    Article  ADS  Google Scholar 

  38. 38.

    K. Hamilton, P. Richardson, J. Tully, A positive-weight next-to-leading order Monte Carlo simulation for Higgs boson production. J. High Energy Phys. 0904, 116 (2009). arXiv:0903.4345 [hep-ph]

    Article  ADS  Google Scholar 

  39. 39.

    A. Papaefstathiou, O. Latunde-Dada, NLO production of W’ bosons at hadron colliders using the MC@NLO and POWHEG methods. J. High Energy Phys. 0907, 044 (2009). arXiv:0901.3685 [hep-ph]

    Article  ADS  Google Scholar 

  40. 40.

    O. Latunde-Dada, MC@NLO for the hadronic decay of Higgs bosons in associated production with vector bosons. J. High Energy Phys. 0905, 112 (2009). arXiv:0903.4135 [hep-ph]

    Article  ADS  Google Scholar 

  41. 41.

    S. Alioli, P. Nason, C. Oleari, E. Re, NLO single-top production matched with shower in POWHEG: s- and t-channel contributions. J. High Energy Phys. 0909, 111 (2009). Erratum J. High Energy Phys. 1002, 011 (2010). arXiv:0907.4076 [hep-ph]

    Article  ADS  Google Scholar 

  42. 42.

    P. Nason, C. Oleari, NLO Higgs boson production via vector-boson fusion matched with shower in POWHEG. J. High Energy Phys. 1002, 037 (2010). arXiv:0911.5299 [hep-ph]

    Article  ADS  Google Scholar 

  43. 43.

    C. Weydert et al., Charged Higgs boson production in association with a top quark in MC@NLO. Eur. Phys. J. C 67, 617 (2010). arXiv:0912.3430 [hep-ph]

    Article  ADS  Google Scholar 

  44. 44.

    P. Torrielli, S. Frixione, Matching NLO QCD computations with PYTHIA using MC@NLO. J. High Energy Phys. 1004, 110 (2010). arXiv:1002.4293 [hep-ph]

    Article  ADS  Google Scholar 

  45. 45.

    G. Corcella et al., HERWIG 6.5: an event generator for hadron emission reactions with interfering gluons (including supersymmetric processes). J. High Energy Phys. 0101, 010 (2001). arXiv:hep-ph/0011363

    Article  ADS  Google Scholar 

  46. 46.

    T. Sjostrand, S. Mrenna, P.Z. Skands, PYTHIA 6.4 physics and manual. J. High Energy Phys. 0605, 026 (2006). arXiv:hep-ph/0603175

    Article  ADS  Google Scholar 

  47. 47.

    M. Bahr et al., Herwig++ physics and manual. Eur. Phys. J. C 58, 639 (2008). arXiv:0803.0883 [hep-ph]

    Article  ADS  Google Scholar 

  48. 48.

    J.M. Butterworth et al., The tools and Monte Carlo working group summary report. arXiv:1003.1643 [hep-ph]

  49. 49.

    S. Hoeche, F. Krauss, M. Schonherr, F. Siegert, Automating the POWHEG method in Sherpa. arXiv:1008.5399 [hep-ph]

  50. 50.

    P. Nason, Recent developments in POWHEG. PoS RADCOR2009, 018 (2010). arXiv:1001.2747 [hep-ph]

    Google Scholar 

  51. 51.

    S. Alioli, P. Nason, C. Oleari, E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX. J. High Energy Phys. 1006, 043 (2010). arXiv:1002.2581 [hep-ph]

    Article  ADS  Google Scholar 

  52. 52.

    A.S. Belyaev, E.E. Boos, L.V. Dudko, Single top quark at future hadron colliders: complete signal and background study. Phys. Rev. D 59, 075001 (1999). arXiv:hep-ph/9806332

    Article  ADS  Google Scholar 

  53. 53.

    T.M.P. Tait, The tW mode of single top production. Phys. Rev. D 61, 034001 (2000). arXiv:hep-ph/9909352

    Article  ADS  Google Scholar 

  54. 54.

    C.D. White, S. Frixione, E. Laenen, F. Maltoni, Isolating Wt production at the LHC. J. High Energy Phys. 0911, 074 (2009). arXiv:0908.0631 [hep-ph]

    Article  ADS  MathSciNet  Google Scholar 

  55. 55.

    J. Alwall et al., MadGraph/MadEvent v4: the new Web generation. J. High Energy Phys. 0709, 028 (2007). arXiv:0706.2334 [hep-ph]

    Article  ADS  Google Scholar 

  56. 56.

    R. Mertig, M. Bohm, A. Denner, FEYN CALC: computer algebraic calculation of Feynman amplitudes. Comput. Phys. Commun. 64, 345 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  57. 57.

    S. Frixione, Z. Kunszt, A. Signer, Three jet cross-sections to next-to-leading order. Nucl. Phys. B 467, 399 (1996). arXiv:hep-ph/9512328

    Article  ADS  Google Scholar 

  58. 58.

    S. Frixione, A General approach to jet cross-sections in QCD. Nucl. Phys. B 507, 295 (1997). arXiv:hep-ph/9706545

    Article  ADS  Google Scholar 

  59. 59.

    R.K. Ellis, G. Zanderighi, Scalar one-loop integrals for QCD. J. High Energy Phys. 0802, 002 (2008). arXiv:0712.1851 [hep-ph]

    Article  ADS  Google Scholar 

  60. 60.

    R. Pittau, Final state QCD corrections to off-shell single top production in hadron collisions. Phys. Lett. B 386, 397 (1996). arXiv:hep-ph/9603265

    Article  ADS  Google Scholar 

  61. 61.

    P. Falgari, P. Mellor, A. Signer, Production-decay interferences at NLO in QCD for t-channel single-top production. Phys. Rev. D 82, 054028 (2010). arXiv:1007.0893 [hep-ph]

    Article  ADS  Google Scholar 

  62. 62.

    J. Pumplin, D.R. Stump, J. Huston, H.L. Lai, P.M. Nadolsky, W.K. Tung, New generation of parton distributions with uncertainties from global QCD analysis. J. High Energy Phys. 0207, 012 (2002). arXiv:hep-ph/0201195

    Article  ADS  Google Scholar 

  63. 63.

    S. Frixione, E. Laenen, P. Motylinski, B.R. Webber, Angular correlations of lepton pairs from vector boson and top quark decays in Monte Carlo simulations. J. High Energy Phys. 0704, 081 (2007). arXiv:hep-ph/0702198

    Article  ADS  Google Scholar 

  64. 64.

    S. Catani, Y.L. Dokshitzer, M.H. Seymour, B.R. Webber, Longitudinally invariant K t clustering algorithms for hadron hadron collisions. Nucl. Phys. B 406, 187 (1993)

    Article  ADS  Google Scholar 

  65. 65.

    M. Cacciari, G.P. Salam, Dispelling the N 3 myth for the k t jet-finder. Phys. Lett. B 641, 57 (2006). arXiv:hep-ph/0512210

    Article  ADS  Google Scholar 

  66. 66.

    K. Hamilton, to appear

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Emanuele Re.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Re, E. Single-top Wt-channel production matched with parton showers using the POWHEG method. Eur. Phys. J. C 71, 1547 (2011). https://doi.org/10.1140/epjc/s10052-011-1547-z

Download citation

Keywords

  • High Energy Phys
  • Parton Shower
  • Subtraction Term
  • Resonant Region
  • POWHEG Method