A comprehensive approach to new physics simulations

  • Neil Christensen
  • Priscila de Aquino
  • Celine Degrande
  • Claude Duhr
  • Benjamin Fuks
  • Michel Herquet
  • Fabio Maltoni
  • Steffen Schumann
Open Access
Special Article - Tools for Experiment and Theory


We describe a framework to develop, implement and validate any perturbative Lagrangian-based particle physics model for further theoretical, phenomenological and experimental studies. The starting point is FeynRules, a Mathematica package that allows to generate Feynman rules for any Lagrangian and then, through dedicated interfaces, automatically pass the corresponding relevant information to any supported Monte Carlo event generator. We prove the power, robustness and flexibility of this approach by presenting a few examples of new physics models (the Hidden Abelian Higgs Model, the general Two-Higgs-Doublet Model, the most general Minimal Supersymmetric Standard Model, the Minimal Higgsless Model, Universal and Large Extra Dimensions, and QCD-inspired effective Lagrangians) and their implementation/validation in FeynArts/FormCalc, CalcHep, MadGraph/MadEvent, and Sherpa.


Higgs Boson Large Hadron Collider Gauge Boson Minimal Supersymmetric Standard Model High Energy Phys 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    M.L. Mangano, Understanding the Standard Model, as a bridge to the discovery of new phenomena at the LHC. Int. J. Mod. Phys. A 23, 3833–3848 (2008). [arXiv:0802.0026] ADSGoogle Scholar
  2. 2.
    N. Arkani-Hamed et al., MARMOSET: The path from LHC data to the new standard model via on-shell effective theories. [arXiv:hep-ph/0703088]
  3. 3.
    G. Bellettini, G. Chiarelli, R. Tenchini, Top quark physics, in Proceedings, International Workshop, TOP 2008, La Biodola, Italy, May 18–24 (2008) Google Scholar
  4. 4.
    A. Pukhov et al., CompHEP: A package for evaluation of Feynman diagrams and integration over multi-particle phase space. User’s manual for version 33. [arXiv:hep-ph/9908288]
  5. 5.
    E. Boos et al. (CompHEP Collaboration), CompHEP 4.4: Automatic computations from Lagrangians to events. Nucl. Instrum. Methods A 534, 250–259 (2004). [arXiv:hep-ph/0403113] ADSGoogle Scholar
  6. 6.
    A. Pukhov, CalcHEP 3.2: MSSM, structure functions, event generation, batchs, and generation of matrix elements for other packages. [arXiv:hep-ph/0412191]
  7. 7.
    T. Stelzer, W.F. Long, Automatic generation of tree level helicity amplitudes. Comput. Phys. Commun. 81, 357–371 (1994). [arXiv:hep-ph/9401258] ADSGoogle Scholar
  8. 8.
    F. Maltoni, T. Stelzer, MadEvent: Automatic event generation with MadGraph. J. High Energy Phys. 02, 027 (2003). [arXiv:hep-ph/0208156] ADSGoogle Scholar
  9. 9.
    J. Alwall et al., MadGraph/MadEvent v4: The New Web generation. J. High Energy Phys. 09, 028 (2007). [arXiv:0706.2334] ADSGoogle Scholar
  10. 10.
    J. Alwall et al., New Developments in MadGraph/MadEvent. AIP Conf. Proc. 1078, 84–89 (2009). [arXiv:0809.2410] ADSGoogle Scholar
  11. 11.
    T. Gleisberg et al., SHERPA 1.alpha, a proof-of-concept version. J. High Energy Phys. 02, 056 (2004). [arXiv:hep-ph/0311263] ADSGoogle Scholar
  12. 12.
    T. Gleisberg et al., Event generation with SHERPA 1.1. J. High Energy Phys. 02, 007 (2009). [arXiv:0811.4622] ADSGoogle Scholar
  13. 13.
    W. Kilian, WHIZARD 1.0: A generic Monte-Carlo integration and event generation package for multi-particle processes. Manual, LC-TOOL-2001-039 Google Scholar
  14. 14.
    M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau, A.D. Polosa, ALPGEN, a generator for hard multiparton processes in hadronic collisions. J. High Energy Phys. 07, 001 (2003). [arXiv:hep-ph/0206293] ADSGoogle Scholar
  15. 15.
    A. Cafarella, C.G. Papadopoulos, M. Worek, Helac-Phegas: a generator for all parton level processes. Comput. Phys. Commun. 180, 1941–1955 (2009). [arXiv:0710.2427] ADSGoogle Scholar
  16. 16.
    T. Gleisberg, S. Hoche, Comix, a new matrix element generator. J. High Energy Phys. 12, 039 (2008). [arXiv:0808.3674] ADSGoogle Scholar
  17. 17.
    T. Gleisberg, F. Krauss, Automating dipole subtraction for QCD NLO calculations. Eur. Phys. J. C 53, 501–523 (2008). [arXiv:0709.2881] ADSGoogle Scholar
  18. 18.
    M.H. Seymour, C. Tevlin, TeVJet: A general framework for the calculation of jet observables in NLO QCD. arXiv:0803.2231
  19. 19.
    K. Hasegawa, S. Moch, P. Uwer, Automating dipole subtraction. Nucl. Phys. B, Proc. Suppl. 183, 268–273 (2008). [arXiv:0807.3701] ADSGoogle Scholar
  20. 20.
    R. Frederix, T. Gehrmann, N. Greiner, Automation of the dipole subtraction method in MadGraph/MadEvent. J. High Energy Phys. 09, 122 (2008). [arXiv:0808.2128] ADSGoogle Scholar
  21. 21.
    M. Czakon, C.G. Papadopoulos, M. Worek, Polarizing the dipoles. J. High Energy Phys. 08, 085 (2009). [arXiv:0905.0883] ADSGoogle Scholar
  22. 22.
    R. Frederix, S. Frixione, F. Maltoni, T. Stelzer, Automation of next-to-leading order computations in QCD: the FKS subtraction. J. High Energy Phys. 10, 003 (2009). [arXiv:0908.4272] ADSGoogle Scholar
  23. 23.
    G. Zanderighi, Recent theoretical progress in perturbative QCD. arXiv:0810.3524
  24. 24.
    R.K. Ellis, K. Melnikov, G. Zanderighi, Generalized unitarity at work: first NLO QCD results for hadronic W + 3jet production. J. High Energy Phys. 04, 077 (2009). [arXiv:0901.4101] ADSGoogle Scholar
  25. 25.
    C.F. Berger et al., Precise predictions for W+3 jet production at hadron colliders. Phys. Rev. Lett. 102, 222001 (2009). [arXiv:0902.2760] ADSGoogle Scholar
  26. 26.
    A. van Hameren, C.G. Papadopoulos, R. Pittau, Automated one-loop calculations: a proof of concept. J. High Energy Phys. 09, 106 (2009). [arXiv:0903.4665] ADSGoogle Scholar
  27. 27.
    T. Sjostrand, S. Mrenna, P. Skands, PYTHIA 6.4 physics and manual. J. High Energy Phys. 05, 026 (2006). [arXiv:hep-ph/0603175] ADSGoogle Scholar
  28. 28.
    T. Sjostrand, S. Mrenna, P. Skands, A brief introduction to PYTHIA 8.1. Comput. Phys. Commun. 178, 852–867 (2008). [arXiv:0710.3820] ADSGoogle Scholar
  29. 29.
    G. Corcella et al., HERWIG 6: An event generator for hadron emission reactions with interfering gluons (including supersymmetric processes). J. High Energy Phys. 01, 010 (2001). [arXiv:hep-ph/0011363] ADSGoogle Scholar
  30. 30.
    M. Bahr et al., Herwig++ Physics and Manual. Eur. Phys. J. C 58, 639–707 (2008). [arXiv:0803.0883] ADSGoogle Scholar
  31. 31.
    S. Catani, F. Krauss, R. Kuhn, B.R. Webber, QCD matrix elements + parton showers. J. High Energy Phys. 111, 063 (2001). [arXiv:hep-ph/0109231] ADSGoogle Scholar
  32. 32.
    F. Krauss, Matrix elements and parton showers in hadronic interactions. J. High Energy Phys. 0208, 015 (2002). [arXiv:hep-ph/0205283] ADSGoogle Scholar
  33. 33.
    S. Mrenna, P. Richardson, Matching matrix elements and parton showers with HERWIG and PYTHIA. J. High Energy Phys. 05, 040 (2004). [arXiv:hep-ph/0312274] ADSGoogle Scholar
  34. 34.
    M.L. Mangano, M. Moretti, F. Piccinini, M. Treccani, Matching matrix elements and shower evolution for top-quark production in hadronic collisions. J. High Energy Phys. 01, 013 (2007). [arXiv:hep-ph/0611129] ADSGoogle Scholar
  35. 35.
    L. Lonnblad, Correcting the colour-dipole cascade model with fixed order matrix elements. J. High Energy Phys. 05, 046 (2002). [arXiv:hep-ph/0112284] ADSGoogle Scholar
  36. 36.
    N. Lavesson, L. Lonnblad, W + jets matrix elements and the dipole cascade. J. High Energy Phys. 07, 054 (2005). [arXiv:hep-ph/0503293] ADSGoogle Scholar
  37. 37.
    S. Hoeche, F. Krauss, S. Schumann, F. Siegert, QCD matrix elements and truncated showers. J. High Energy Phys. 05, 053 (2009). [arXiv:0903.1219] ADSGoogle Scholar
  38. 38.
    S. Höche et al., Matching parton showers and matrix elements. arXiv:hep-ph/0602031
  39. 39.
    J. Alwall et al., Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions. Eur. Phys. J. C 53, 473–500 (2008). [arXiv:0706.2569] ADSGoogle Scholar
  40. 40.
    F. Krauss, A. Schalicke, S. Schumann, G. Soff, Simulating W/Z + jets production at the Tevatron. Phys. Rev. D 70, 114009 (2004). [arXiv:hep-ph/0409106] ADSGoogle Scholar
  41. 41.
    J. Alwall, S. de Visscher, F. Maltoni, QCD radiation in the production of heavy colored particles at the LHC. J. High Energy Phys. 02, 017 (2009). [arXiv:0810.5350] ADSGoogle Scholar
  42. 42.
    S. Frixione, B.R. Webber, Matching NLO QCD computations and parton shower simulations. J. High Energy Phys. 06, 029 (2002). [arXiv:hep-ph/0204244] ADSGoogle Scholar
  43. 43.
    S. Frixione, P. Nason, B.R. Webber, Matching NLO QCD and parton showers in heavy flavour production. J. High Energy Phys. 08, 007 (2003). [arXiv:hep-ph/0305252] ADSGoogle Scholar
  44. 44.
    P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms. J. High Energy Phys. 11, 040 (2004). [arXiv:hep-ph/0409146] ADSGoogle Scholar
  45. 45.
    S. Alioli, P. Nason, C. Oleari, E. Re, NLO vector-boson production matched with shower in POWHEG. J. High Energy Phys. 07, 060 (2008). [arXiv:0805.4802] ADSGoogle Scholar
  46. 46.
    S. Alioli, P. Nason, C. Oleari, E. Re, NLO Higgs boson production via gluon fusion matched with shower in POWHEG. J. High Energy Phys. 04, 002 (2009). [arXiv:0812.0578] ADSGoogle Scholar
  47. 47.
    K. Hamilton, P. Richardson, J. Tully, A positive-weight next-to-leading order Monte Carlo simulation of Drell-Yan vector boson production. J. High Energy Phys. 10, 015 (2008). [arXiv:0806.0290] ADSGoogle Scholar
  48. 48.
    K. Hamilton, P. Richardson, J. Tully, A positive-weight next-to-leading order Monte Carlo simulation for Higgs boson production. J. High Energy Phys. 04, 116 (2009). [arXiv:0903.4345] ADSGoogle Scholar
  49. 49.
    A. Semenov, LanHEP: A package for automatic generation of Feynman rules from the Lagrangian. Comput. Phys. Commun. 115, 124–139 (1998) zbMATHADSGoogle Scholar
  50. 50.
    J.D. Wells, How to find a hidden world at the large hadron collider. arXiv:0803.1243
  51. 51.
    M. Bowen, Y. Cui, J.D. Wells, Narrow trans-TeV Higgs bosons and H –> h h decays: Two LHC search paths for a hidden sector Higgs boson. J. High Energy Phys. 03, 036 (2007). [arXiv:hep-ph/0701035] ADSGoogle Scholar
  52. 52.
    N.D. Christensen, C. Duhr, FeynRules—Feynman rules made easy. Comput. Phys. Commun. 180, 1614–1641 (2009). [arXiv:0806.4194] ADSGoogle Scholar
  53. 53.
  54. 54.
    C. Amsler et al. (Particle Data Group Collaboration), Review of particle physics. Phys. Lett. B 667, 1 (2008) ADSGoogle Scholar
  55. 55.
    T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3. Comput. Phys. Commun. 140, 418–431 (2001). [arXiv:hep-ph/0012260] zbMATHADSGoogle Scholar
  56. 56.
    T. Hahn, M. Perez-Victoria, Automatized one-loop calculations in four and D dimensions. Comput. Phys. Commun. 118, 153–165 (1999). [arXiv:hep-ph/9807565] ADSGoogle Scholar
  57. 57.
    J.A.M. Vermaseren, New features of FORM. arXiv:math-ph/0010025
  58. 58.
    D. Fliegner, A. Retey, J.A.M. Vermaseren, Parallelizing the symbolic manipulation program FORM. arXiv:hep-ph/9906426
  59. 59.
    D. Fliegner, A. Retey, J.A.M. Vermaseren, Parallelizing the symbolic manipulation program FORM. I: Workstation clusters and message passing. arXiv:hep-ph/0007221
  60. 60.
    M. Tentyukov et al., ParFORM: parallel version of the symbolic manipulation program FORM. arXiv:cs/0407066
  61. 61.
    M. Tentyukov, J.A.M. Vermaseren, The multithreaded version of FORM. Comput. Phys. Commun. 181, 1419–1427 (2010). [arXiv:hep-ph/0702279] ADSGoogle Scholar
  62. 62.
    H. Murayama, I. Watanabe, K. Hagiwara, HELAS: HELicity amplitude subroutines for Feynman diagram evaluations. KEK-91-11 Google Scholar
  63. 63.
    K. Hagiwara, J. Kanzaki, Q. Li, K. Mawatari, HELAS and MadGraph/MadEvent with spin-2 particles. Eur. Phys. J. C 56, 435–447 (2008). [arXiv:0805.2554] ADSGoogle Scholar
  64. 64.
    J. Alwall et al., A les houches interface for BSM generators. arXiv:0712.3311
  65. 65.
    P. Meade, M. Reece, BRIDGE: Branching ratio inquiry/decay generated events. arXiv:hep-ph/0703031
  66. 66.
    F. Krauss, R. Kuhn, G. Soff, AMEGIC++ 1.0: A matrix element generator in C++. J. High Energy Phys. 02, 044 (2002). [arXiv:hep-ph/0109036] ADSGoogle Scholar
  67. 67.
    R. Kleiss, W.J. Stirling, Spinor techniques for calculating \(p\bar{p}\rightarrow W^{\pm}/Z^{0}+\)jets. Nucl. Phys. B 262, 235–262 (1985) ADSGoogle Scholar
  68. 68.
    K. Hagiwara, D. Zeppenfeld, Helicity amplitudes for heavy lepton production in e + e annihilation. Nucl. Phys. B 274, 1 (1986) ADSGoogle Scholar
  69. 69.
    R. Kleiss, R. Pittau, Weight optimization in multichannel Monte Carlo. Comput. Phys. Commun. 83, 141–146 (1994). [arXiv:hep-ph/9405257] ADSGoogle Scholar
  70. 70.
    F.A. Berends, R. Pittau, R. Kleiss, All electroweak four-fermion processes in electron-positron collisions. Nucl. Phys. B 424, 308 (1994). [arXiv:hep-ph/9404313] ADSGoogle Scholar
  71. 71.
    G.P. Lepage, VEGAS—an adaptive multi-dimensional integration program. CLNS-80/447 Google Scholar
  72. 72.
    T. Ohl, Vegas revisited: Adaptive Monte Carlo integration beyond factorization. Comput. Phys. Commun. 120, 13–19 (1999). [arXiv:hep-ph/9806432] zbMATHADSGoogle Scholar
  73. 73.
    S. Schumann, F. Krauss, A parton shower algorithm based on Catani-Seymour dipole factorisation. J. High Energy Phys. 03, 038 (2008). [arXiv:0709.1027] ADSGoogle Scholar
  74. 74.
    F. Krauss, A. Schälicke, G. Soff, APACIC++ 2.0: A PArton Cascade. In C++. Comput. Phys. Commun. 174, 876–902 (2006). [arXiv:hep-ph/0503087] ADSGoogle Scholar
  75. 75.
    S. Höche, F. Krauss, M. Schönherr, F. Siegert, Automating the POWHEG method in Sherpa. arXiv:1008.5399
  76. 76.
    S. Höche, F. Krauss, M. Schönherr, F. Siegert, NLO matrix elements and truncated showers. arXiv:1009.1127
  77. 77.
    F. Krauss, A. Schalicke, S. Schumann, G. Soff, Simulating W/Z+jets production at the CERN LHC. Phys. Rev. D 72, 054017 (2005). [arXiv:hep-ph/0503280] ADSGoogle Scholar
  78. 78.
    T. Gleisberg, F. Krauss, A. Schälicke, S. Schumann, J.-C. Winter, Studying W + W production at the Fermilab Tevatron with SHERPA. Phys. Rev. D 72, 034028 (2005). [arXiv:hep-ph/0504032] ADSGoogle Scholar
  79. 79.
    S. Höche, S. Schumann, F. Siegert, Hard photon production and matrix-element parton-shower merging. Phys. Rev. D 81, 034026 (2010). [arXiv:0912.3501] ADSGoogle Scholar
  80. 80.
    T. Carli, T. Gehrmann, S. Höche, Hadronic final states in deep-inelastic scattering with Sherpa. Eur. Phys. J. C 67, 73 (2010). [arXiv:0912.3715] ADSGoogle Scholar
  81. 81.
    T. Sjöstrand, M. van Zijl, A multiple-interaction model for the event structure in hadron collisions. Phys. Rev. D 36, 2019 (1987) ADSGoogle Scholar
  82. 82.
    S. Alekhin et al., HERA and the LHC—A workshop on the implications of HERA for LHC physics: Proceedings Part A. arXiv:hep-ph/0601012
  83. 83.
    J.-C. Winter, F. Krauss, G. Soff, A modified cluster-hadronisation model. Eur. Phys. J. C 36, 381–395 (2004). [arXiv:hep-ph/0311085] ADSGoogle Scholar
  84. 84.
    F. Krauss, T. Laubrich, F. Siegert, Simulation of hadron decays in Sherpa, in preparation Google Scholar
  85. 85.
    M. Schonherr, F. Krauss, Soft photon radiation in particle decays in SHERPA. J. High Energy Phys. 12, 018 (2008). [arXiv:0810.5071] ADSGoogle Scholar
  86. 86.
    S. Dawson, Radiative corrections to Higgs boson production. Nucl. Phys. B 359, 283–300 (1991) ADSGoogle Scholar
  87. 87.
    T. Appelquist, C.W. Bernard, Strongly interacting Higgs bosons. Phys. Rev. D 22, 200 (1980) ADSGoogle Scholar
  88. 88.
    T. Appelquist, G.-H. Wu, Electroweak chiral Lagrangian and new precision measurements. Phys. Rev. D 48, 3235–3241 (1993). [arXiv:hep-ph/9304240] ADSGoogle Scholar
  89. 89.
    A. Dedes, T. Figy, S. Hoche, F. Krauss, T.E.J. Underwood, Searching for Nambu-Goldstone Bosons at the LHC. J. High Energy Phys. 11, 036 (2008). [arXiv:0807.4666] ADSGoogle Scholar
  90. 90.
    O. Antunano, J.H. Kuhn, G. Rodrigo, Top quarks, axigluons and charge asymmetries at hadron colliders. Phys. Rev. D 77, 014003 (2008). [arXiv:0709.1652] ADSGoogle Scholar
  91. 91.
    N. Arkani-Hamed, S. Dimopoulos, G.R. Dvali, The hierarchy problem and new dimensions at a millimeter. Phys. Lett. B 429, 263–272 (1998). [arXiv:hep-ph/9803315] ADSGoogle Scholar
  92. 92.
    I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, G.R. Dvali, New dimensions at a millimeter to a Fermi and superstrings at a TeV. Phys. Lett. B 436, 257–263 (1998). [arXiv:hep-ph/9804398] ADSGoogle Scholar
  93. 93.
    T. Gleisberg, F. Krauss, K.T. Matchev, A. Schälicke, S. Schumann, G. Soff, Helicity formalism for spin-2 particles. J. High Energy Phys. 09, 001 (2003). [arXiv:hep-ph/0306182] ADSGoogle Scholar
  94. 94.
    A. Denner, H. Eck, O. Hahn, J. Kublbeck, Feynman rules for fermion number violating interactions. Nucl. Phys. B 387, 467–484 (1992) ADSGoogle Scholar
  95. 95.
    K. Agashe, A. Belyaev, T. Krupovnickas, G. Perez, J. Virzi, LHC signals from warped extra dimensions. Phys. Rev. D 77, 015003 (2008). [arXiv:hep-ph/0612015] ADSGoogle Scholar
  96. 96.
    C. Kilic, S. Schumann, M. Son, Searching for multijet resonances at the LHC. J. High Energy Phys. 04, 128 (2009). [arXiv:0810.5542] ADSGoogle Scholar
  97. 97.
    P. Meade, M. Papucci, T. Volansky, Dark matter sees the light. J. High Energy Phys. 12, 052 (2009). [arXiv:0901.2925] ADSGoogle Scholar
  98. 98.
    S. de Visscher, J.-M. Gerard, M. Herquet, V. Lemaitre, F. Maltoni, Unconventional phenomenology of a minimal two-Higgs-doublet model. J. High Energy Phys. 08, 042 (2009). [arXiv:0904.0705] Google Scholar
  99. 99.
    G.C. Branco, L. Lavoura, J.P. Silva, CP Violation (Clarendon, Oxford, 1999) Google Scholar
  100. 100.
    I.F. Ginzburg, M. Krawczyk, Symmetries of two Higgs doublet model and CP violation. Phys. Rev. D 72, 115013 (2005). [arXiv:hep-ph/0408011] ADSGoogle Scholar
  101. 101.
    S. Davidson, H.E. Haber, Basis-independent methods for the two-Higgs-doublet model. Phys. Rev. D 72, 035004 (2005). [arXiv:hep-ph/0504050] ADSGoogle Scholar
  102. 102.
    H.E. Haber, D. O’Neil, Basis-independent methods for the two-Higgs-doublet model. II: The significance of tan(beta). Phys. Rev. D 74, 015018 (2006). [arXiv:hep-ph/0602242] ADSGoogle Scholar
  103. 103.
    J. Wess, B. Zumino, Supergauge transformations in four-dimensions. Nucl. Phys. B 70, 39–50 (1974) ADSMathSciNetGoogle Scholar
  104. 104.
    H.P. Nilles, Supersymmetry, supergravity and particle physics. Phys. Rep. 110, 1–162 (1984) ADSGoogle Scholar
  105. 105.
    H.E. Haber, G.L. Kane, The search for supersymmetry: probing physics beyond the standard model. Phys. Rep. 117, 75–263 (1985) ADSGoogle Scholar
  106. 106.
    S. Dawson, E. Eichten, C. Quigg, Search for supersymmetric particles in hadron—hadron collisions. Phys. Rev. D 31, 1581 (1985) ADSGoogle Scholar
  107. 107.
    N.S. Craigie, K. Hidaka, P. Ratcliffe, The role helicity asymmetries could play in the search for supersymmetric interactions. Phys. Lett. B 129, 310 (1983) ADSGoogle Scholar
  108. 108.
    N.S. Craigie, K. Hidaka, M. Jacob, F.M. Renard, Spin physics at short distances. Phys. Rep. 99, 69–236 (1983) ADSGoogle Scholar
  109. 109.
    P. Chiappetta, J. Soffer, P. Taxil, Spin asymmetries for scalar leptons from w and z decay in p anti-p collisions. Phys. Lett. B 162, 192 (1985) ADSGoogle Scholar
  110. 110.
    F. del Aguila, L. Ametller, On the detectability of sleptons at large hadron colliders. Phys. Lett. B 261, 326–333 (1991) ADSGoogle Scholar
  111. 111.
    H. Baer, C.-H. Chen, F. Paige, X. Tata, Detecting sleptons at hadron colliders and supercolliders. Phys. Rev. D 49, 3283–3290 (1994). [arXiv:hep-ph/9311248] ADSGoogle Scholar
  112. 112.
    T. Gehrmann, D. Maitre, D. Wyler, Spin asymmetries in squark and gluino production at polarized hadron colliders. Nucl. Phys. B 703, 147–176 (2004). [arXiv:hep-ph/0406222] ADSGoogle Scholar
  113. 113.
    G. Bozzi, B. Fuks, M. Klasen, Slepton production in polarized hadron collisions. Phys. Lett. B 609, 339–350 (2005). [arXiv:hep-ph/0411318] ADSGoogle Scholar
  114. 114.
    G. Bozzi, B. Fuks, M. Klasen, Non-diagonal and mixed squark production at hadron colliders. Phys. Rev. D 72, 035016 (2005). [arXiv:hep-ph/0507073] ADSGoogle Scholar
  115. 115.
    G. Bozzi, B. Fuks, B. Herrmann, M. Klasen, Squark and gaugino hadroproduction and decays in non-minimal flavour violating supersymmetry. Nucl. Phys. B 787, 1–54 (2007). [arXiv:0704.1826] zbMATHADSGoogle Scholar
  116. 116.
    B. Fuks, B. Herrmann, M. Klasen, Flavour violation in gauge-mediated supersymmetry breaking models: experimental constraints and phenomenology at the LHC. Nucl. Phys. B 810, 266–299 (2009). [arXiv:0808.1104] ADSGoogle Scholar
  117. 117.
    J. Debove, B. Fuks, M. Klasen, Model-independent analysis of gaugino-pair production in polarized and unpolarized hadron collisions. Phys. Rev. D 78, 074020 (2008). [arXiv:0804.0423] ADSGoogle Scholar
  118. 118.
    W. Beenakker, R. Hopker, M. Spira, P.M. Zerwas, Squark and gluino production at hadron colliders. Nucl. Phys. B 492, 51–103 (1997). [arXiv:hep-ph/9610490] ADSGoogle Scholar
  119. 119.
    W. Beenakker, M. Kramer, T. Plehn, M. Spira, P.M. Zerwas, Stop production at hadron colliders. Nucl. Phys. B 515, 3–14 (1998). [arXiv:hep-ph/9710451] ADSGoogle Scholar
  120. 120.
    H. Baer, B.W. Harris, M.H. Reno, Next-to-leading order slepton pair production at hadron colliders. Phys. Rev. D 57, 5871–5874 (1998). [arXiv:hep-ph/9712315] ADSGoogle Scholar
  121. 121.
    E.L. Berger, M. Klasen, T.M.P. Tait, Scale dependence of squark and gluino production cross sections. Phys. Rev. D 59, 074024 (1999). [arXiv:hep-ph/9807230] ADSGoogle Scholar
  122. 122.
    E.L. Berger, M. Klasen, T.M.P. Tait, Associated production of gauginos and gluinos at hadron colliders in next-to-leading order SUSY-QCD. Phys. Lett. B 459, 165–170 (1999). [arXiv:hep-ph/9902350] ADSGoogle Scholar
  123. 123.
    E.L. Berger, M. Klasen, T.M.P. Tait, Next-to-leading order SUSY-QCD predictions for associated production of gauginos and gluinos. Phys. Rev. D 62, 095014 (2000). [arXiv:hep-ph/0005196] ADSGoogle Scholar
  124. 124.
    W. Beenakker et al., The production of charginos/neutralinos and sleptons at hadron colliders. Phys. Rev. Lett. 83, 3780–3783 (1999). [arXiv:hep-ph/9906298] ADSGoogle Scholar
  125. 125.
    G. Bozzi, B. Fuks, M. Klasen, Transverse-momentum resummation for slepton-pair production at the LHC. Phys. Rev. D 74, 015001 (2006). [arXiv:hep-ph/0603074] ADSGoogle Scholar
  126. 126.
    G. Bozzi, B. Fuks, M. Klasen, Threshold resummation for slepton-pair production at hadron colliders. Nucl. Phys. B 777, 157–181 (2007). [arXiv:hep-ph/0701202] ADSGoogle Scholar
  127. 127.
    G. Bozzi, B. Fuks, M. Klasen, Joint resummation for slepton pair production at hadron colliders. Nucl. Phys. B 794, 46–60 (2008). [arXiv:0709.3057] zbMATHADSGoogle Scholar
  128. 128.
    A. Kulesza, L. Motyka, Threshold resummation for squark-antisquark and gluino-pair production at the LHC. Phys. Rev. Lett. 102, 111802 (2009). [arXiv:0807.2405] ADSGoogle Scholar
  129. 129.
    A. Kulesza, L. Motyka, Soft gluon resummation for the production of gluino-gluino and squark-antisquark pairs at the LHC. Phys. Rev. D 80, 095004 (2009). [arXiv:0905.4749] ADSGoogle Scholar
  130. 130.
    J. Debove, B. Fuks, M. Klasen, Transverse-momentum resummation for gaugino-pair production at hadron colliders. Phys. Lett. B 688, 208–211 (2010). [arXiv:0907.1105] ADSGoogle Scholar
  131. 131.
    T. Hahn, C. Schappacher, The implementation of the minimal supersymmetric standard model in FeynArts and FormCalc. Comput. Phys. Commun. 143, 54–68 (2002). [arXiv:hep-ph/0105349] zbMATHADSGoogle Scholar
  132. 132.
    T. Hahn, W. Hollik, J.I. Illana, S. Penaranda, Interplay between H –> b anti-s and b –> s gamma in the MSSM with non-minimal flavour violation. arXiv:hep-ph/0512315
  133. 133.
    G. Belanger, F. Boudjema, A. Pukhov, A. Semenov, micrOMEGAs: Version 1.3. Comput. Phys. Commun. 174, 577–604 (2006). [arXiv:hep-ph/0405253] zbMATHADSGoogle Scholar
  134. 134.
    G.C. Cho et al., Weak boson fusion production of supersymmetric particles at the LHC. Phys. Rev. D 73, 054002 (2006). [arXiv:hep-ph/0601063] ADSGoogle Scholar
  135. 135.
    K. Hagiwara et al., Supersymmetry simulations with off-shell effects for LHC and ILC. Phys. Rev. D 73, 055005 (2006). [arXiv:hep-ph/0512260] ADSGoogle Scholar
  136. 136.
    S. Dimopoulos, D.W. Sutter, The supersymmetric flavor problem. Nucl. Phys. B 452, 496–512 (1995). [arXiv:hep-ph/9504415] ADSGoogle Scholar
  137. 137.
    P. Skands et al., Susy les houches accord: Interfacing susy spectrum calculators, decay packages, and event generators. J. High Energy Phys. 07, 036 (2004). [arXiv:hep-ph/0311123] ADSGoogle Scholar
  138. 138.
    B. Allanach et al., SUSY Les Houches Accord 2. Comput. Phys. Commun. 180, 8–25 (2009). [arXiv:0801.0045] ADSGoogle Scholar
  139. 139.
    C. Duhr, B. Fuks, in preparation Google Scholar
  140. 140.
    G. ’t Hooft, Symmetry breaking through Bell-Jackiw anomalies. Phys. Rev. Lett. 37, 8–11 (1976) ADSGoogle Scholar
  141. 141.
    G.R. Farrar, P. Fayet, Phenomenology of the production, decay, and detection of new hadronic states associated with supersymmetry. Phys. Lett. B 76, 575–579 (1978) ADSGoogle Scholar
  142. 142.
    L. Girardello, M.T. Grisaru, Soft breaking of supersymmetry. Nucl. Phys. B 194, 65 (1982) ADSGoogle Scholar
  143. 143.
    L.J. Hall, V.A. Kostelecky, S. Raby, New flavor violations in supergravity models. Nucl. Phys. B 267, 415 (1986) ADSGoogle Scholar
  144. 144.
    S. Weinberg, Implications of dynamical symmetry breaking: an addendum. Phys. Rev. D 19, 1277–1280 (1979) ADSGoogle Scholar
  145. 145.
    L. Susskind, Dynamics of spontaneous symmetry breaking in the Weinberg-Salam theory. Phys. Rev. D 20, 2619–2625 (1979) ADSGoogle Scholar
  146. 146.
    C. Csaki, C. Grojean, H. Murayama, L. Pilo, J. Terning, Gauge theories on an interval: unitarity without a Higgs. Phys. Rev. D 69, 055006 (2004). [arXiv:hep-ph/0305237] ADSGoogle Scholar
  147. 147.
    C. Csaki, C. Grojean, L. Pilo, J. Terning, Towards a realistic model of Higgsless electroweak symmetry breaking. Phys. Rev. Lett. 92, 101802 (2004). [arXiv:hep-ph/0308038] ADSGoogle Scholar
  148. 148.
    J.M. Maldacena, The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231–252 (1998). [arXiv:hep-th/9711200] zbMATHADSMathSciNetGoogle Scholar
  149. 149.
    R.S. Chivukula, D.A. Dicus, H.-J. He, Unitarity of compactified five dimensional Yang-Mills theory. Phys. Lett. B 525, 175–182 (2002). [arXiv:hep-ph/0111016] zbMATHADSMathSciNetGoogle Scholar
  150. 150.
    R.S. Chivukula, H.-J. He, Unitarity of deconstructed five-dimensional Yang-Mills theory. Phys. Lett. B 532, 121–128 (2002). [arXiv:hep-ph/0201164] zbMATHADSMathSciNetGoogle Scholar
  151. 151.
    R.S. Chivukula, D.A. Dicus, H.-J. He, S. Nandi, Unitarity of the higher dimensional standard model. Phys. Lett. B 562, 109–117 (2003). [arXiv:hep-ph/0302263] ADSGoogle Scholar
  152. 152.
    H.-J. He et al., LHC signatures of new gauge bosons in minimal Higgsless model. Phys. Rev. D 78, 031701 (2008). [arXiv:0708.2588] ADSGoogle Scholar
  153. 153.
    T. Ohl, C. Speckner, Production of almost fermiophobic gauge bosons in the minimal Higgsless model at the LHC. Phys. Rev. D 78, 095008 (2008). [arXiv:0809.0023] ADSGoogle Scholar
  154. 154.
    N. Arkani-Hamed, A.G. Cohen, H. Georgi, (De)constructing dimensions. Phys. Rev. Lett. 86, 4757–4761 (2001). [arXiv:hep-th/0104005] ADSMathSciNetGoogle Scholar
  155. 155.
    C.T. Hill, S. Pokorski, J. Wang, Gauge invariant effective Lagrangian for Kaluza-Klein modes. Phys. Rev. D 64, 105005 (2001). [arXiv:hep-th/0104035] ADSGoogle Scholar
  156. 156.
    R.S. Chivukula et al., A three site higgsless model. Phys. Rev. D 74, 075011 (2006). [arXiv:hep-ph/0607124] ADSGoogle Scholar
  157. 157.
    M.E. Peskin, T. Takeuchi, Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992) ADSGoogle Scholar
  158. 158.
    G. Altarelli, R. Barbieri, Vacuum polarization effects of new physics on electroweak processes. Phys. Lett. B 253, 161–167 (1991) ADSGoogle Scholar
  159. 159.
    G. Altarelli, R. Barbieri, S. Jadach, Toward a model independent analysis of electroweak data. Nucl. Phys. B 369, 3–32 (1992) ADSGoogle Scholar
  160. 160.
    R. Barbieri, A. Pomarol, R. Rattazzi, A. Strumia, Electroweak symmetry breaking after LEP-1 and LEP-2. Nucl. Phys. B 703, 127–146 (2004). [arXiv:hep-ph/0405040] ADSGoogle Scholar
  161. 161.
    R.S. Chivukula, E.H. Simmons, H.-J. He, M. Kurachi, M. Tanabashi, Ideal fermion delocalization in Higgsless models. Phys. Rev. D 72, 015008 (2005). [arXiv:hep-ph/0504114] ADSGoogle Scholar
  162. 162.
    G. Cacciapaglia, C. Csaki, C. Grojean, J. Terning, Curing the Ills of Higgsless models: The S parameter and unitarity. Phys. Rev. D 71, 035015 (2005). [arXiv:hep-ph/0409126] ADSGoogle Scholar
  163. 163.
    R. Foadi, S. Gopalakrishna, C. Schmidt, Effects of fermion localization in Higgsless theories and electroweak constraints. Phys. Lett. B 606, 157–163 (2005). [arXiv:hep-ph/0409266] ADSGoogle Scholar
  164. 164.
    T. Appelquist, H.-C. Cheng, B.A. Dobrescu, Bounds on universal extra dimensions. Phys. Rev. D 64, 035002 (2001). [arXiv:hep-ph/0012100] ADSGoogle Scholar
  165. 165.
    L. Randall, R. Sundrum, A large mass hierarchy from a small extra dimension. Phys. Rev. Lett. 83, 3370–3373 (1999). [arXiv:hep-ph/9905221] zbMATHADSMathSciNetGoogle Scholar
  166. 166.
    N. Arkani-Hamed, S. Dimopoulos, G.R. Dvali, Phenomenology, astrophysics and cosmology of theories with sub-millimeter dimensions and TeV scale quantum gravity. Phys. Rev. D 59, 086004 (1999). [arXiv:hep-ph/9807344] ADSGoogle Scholar
  167. 167.
    H.-C. Cheng, K.T. Matchev, M. Schmaltz, Bosonic supersymmetry? Getting fooled at the LHC. Phys. Rev. D 66, 056006 (2002) ADSGoogle Scholar
  168. 168.
    G. Servant, T.M.P. Tait, Is the lightest Kaluza–Klein particle a viable dark matter candidate? Nucl. Phys. B 650, 391–419 (2003). [arXiv:hep-ph/0206071] ADSGoogle Scholar
  169. 169.
    F. Burnell, G.D. Kribs, The abundance of Kaluza–Klein dark matter with coannihilation. Phys. Rev. D 73, 015001 (2006). [arXiv:hep-ph/0509118] ADSGoogle Scholar
  170. 170.
    K. Kong, K.T. Matchev, Precise calculation of the relic density of Kaluza–Klein dark matter in universal extra dimensions. J. High Energy Phys. 01, 038 (2006). [arXiv:hep-ph/0509119] ADSGoogle Scholar
  171. 171.
    T. Han, J.D. Lykken, R.-J. Zhang, On Kaluza–Klein states from large extra dimensions. Phys. Rev. D 59, 105006 (1999). [arXiv:hep-ph/9811350] ADSMathSciNetGoogle Scholar
  172. 172.
    A. Datta, K. Kong, K.T. Matchev, Minimal universal extra dimensions in CalcHEP/CompHEP. Available at
  173. 173.
    A. Perez-Lorenzana, An introduction to extra dimensions. J. Phys. Conf. Ser. 18, 224–269 (2005). [arXiv:hep-ph/0503177] ADSGoogle Scholar
  174. 174.
    G.F. Giudice, C. Grojean, A. Pomarol, R. Rattazzi, The strongly-interacting light Higgs. J. High Energy Phys. 06, 045 (2007). [arXiv:hep-ph/0703164] ADSGoogle Scholar
  175. 175.
    E. Witten, Large N chiral dynamics. Ann. Phys. 128, 363 (1980) ADSGoogle Scholar
  176. 176.
    J.A. Cronin, Phenomenological model of strong and weak interactions in chiral U(3)×U(3). Phys. Rev. 161, 1483–1494 (1967) ADSGoogle Scholar
  177. 177.
    S.R. Coleman, J. Wess, B. Zumino, Structure of phenomenological Lagrangians. 1. Phys. Rev. 177, 2239–2247 (1969) ADSGoogle Scholar
  178. 178.
    J. Callan, G. Curtis, S.R. Coleman, J. Wess, B. Zumino, Structure of phenomenological Lagrangians. 2. Phys. Rev. 177, 2247–2250 (1969) ADSGoogle Scholar
  179. 179.
    J.M. Gerard, E. Kou, eta-eta’ masses and mixing: a large N(c) reappraisal. Phys. Lett. B 616, 85–92 (2005). [arXiv:hep-ph/0411292] ADSGoogle Scholar
  180. 180.
    H. Leutwyler, Bounds on the light quark masses. Phys. Lett. B 374, 163–168 (1996). [arXiv:hep-ph/9601234] ADSGoogle Scholar
  181. 181.
    P. Herrera-Siklody, J.I. Latorre, P. Pascual, J. Taron, eta eta’ mixing from U(3)L×U(3)R chiral perturbation theory. Phys. Lett. B 419, 326–332 (1998). [arXiv:hep-ph/9710268] ADSGoogle Scholar
  182. 182.
    J. Rosiek, Complete set of Feynman rules for the minimal supersymmetric extension of the standard model. Phys. Rev. D 41, 3464 (1990) ADSGoogle Scholar
  183. 183.
    J. Rosiek, Complete set of Feynman rules for the MSSM—ERRATUM. arXiv:hep-ph/9511250
  184. 184.
    J.F. Gunion, H.E. Haber, Higgs bosons in supersymmetric models. 1. Nucl. Phys. B 272, 1 (1986) ADSGoogle Scholar
  185. 185.
    B.C. Allanach et al., The Snowmass points and slopes: benchmarks for SUSY searches. Eur. Phys. J. C 25, 113–123 (2002). [arXiv:hep-ph/0202233] ADSGoogle Scholar
  186. 186.
    G.F. Giudice, R. Rattazzi, J.D. Wells, Quantum gravity and extra dimensions at high-energy colliders. Nucl. Phys. B 544, 3–38 (1999). [arXiv:hep-ph/9811291] ADSGoogle Scholar
  187. 187.
    T.G. Rizzo, Probes of universal extra dimensions at colliders. Phys. Rev. D 64, 095010 (2001) ADSGoogle Scholar
  188. 188.
    C. Degrande, J.M. Gerard, A theoretical determination of the eta-eta’ mixing. J. High Energy Phys. 05, 043 (2009). [arXiv:0901.2860] ADSGoogle Scholar
  189. 189.
    K. Hagiwara, R. Szalapski, D. Zeppenfeld, Anomalous Higgs boson production and decay. Phys. Lett. B 318, 155–162 (1993). [arXiv:hep-ph/9308347] ADSGoogle Scholar
  190. 190.
    J. Alwall et al., A standard format for Les Houches event files. Comput. Phys. Commun. 176, 300–304 (2007). [arXiv:hep-ph/0609017] ADSGoogle Scholar
  191. 191.
    B.C. Allanach, SOFTSUSY: A C++ program for calculating supersymmetric spectra. Comput. Phys. Commun. 143, 305–331 (2002). [arXiv:hep-ph/0104145] zbMATHADSGoogle Scholar
  192. 192.
    H.-C. Cheng, K.T. Matchev, M. Schmaltz, Radiative corrections to Kaluza–Klein masses. Phys. Rev. D 66, 036005 (2002) ADSGoogle Scholar
  193. 193.
    M. ElKacimi, D. Goujdami, H. Przysiezniak, P. Skands, One universal extra dimension in Pythia. Comput. Phys. Commun. 181, 122–127 (2010). [arXiv:0901.4087] zbMATHADSGoogle Scholar

Copyright information

© The Author(s) 2011

Authors and Affiliations

  • Neil Christensen
    • 1
    • 2
  • Priscila de Aquino
    • 3
    • 4
  • Celine Degrande
    • 3
  • Claude Duhr
    • 3
  • Benjamin Fuks
    • 5
  • Michel Herquet
    • 6
  • Fabio Maltoni
    • 3
  • Steffen Schumann
    • 7
  1. 1.Department of Physics and AstronomyMichigan State UniversityEast LansingUSA
  2. 2.Department of PhysicsUniversity of Wisconsin—MadisonMadisonUSA
  3. 3.Center for Cosmology, Particle Physics and PhenomenologyUniversité Catholique de LouvainLouvain-la-NeuveBelgium
  4. 4.Instituut voor Theoretische FysicaKatholieke Universiteit LeuvenLeuvenBelgium
  5. 5.Institut Pluridisciplinaire Hubert Curien/Département Recherche SubatomiqueUniversité de Strasbourg/CNRS-IN2P3StrasbourgFrance
  6. 6.Nikhef Theory GroupAmsterdamThe Netherlands
  7. 7.Institut für Theoretische PhysikUniversität HeidelbergHeidelbergGermany

Personalised recommendations