Skip to main content

Reevaluation of the hadronic contributions to the muon g−2 and to \(\alpha (M^{2}_{Z})\)

An Erratum to this article was published on 09 February 2012

Abstract

We reevaluate the hadronic contributions to the muon magnetic anomaly, and to the running of the electromagnetic coupling constant at the Z-boson mass. We include new π + π cross-section data from KLOE, all available multi-hadron data from BABAR, a reestimation of missing low-energy contributions using results on cross sections and process dynamics from BABAR, a reevaluation of all experimental contributions using the software package HVPTools together with a reanalysis of inter-experiment and inter-channel correlations, and a reevaluation of the continuum contributions from perturbative QCD at four loops. These improvements lead to a decrease in the hadronic contributions with respect to earlier evaluations. For the muon g−2 we find lowest-order hadronic contributions of (692.3±4.2)⋅10−10 and (701.5±4.7)⋅10−10 for the e + e -based and τ-based analyses, respectively, and full Standard Model predictions that differ by 3.6σ and 2.4σ from the experimental value. For the e + e -based five-quark hadronic contribution to \(\alpha(M_{Z}^{2})\) we find \(\varDelta \alpha_{\mathrm{had}}^{(5)}(M_{Z}^{2}) =(274.9\pm1.0)\cdot10^{-4}\). The reduced electromagnetic coupling strength at M Z leads to an increase by 12 GeV in the central value of the Higgs boson mass obtained by the standard Gfitter fit to electroweak precision data.

References

  1. 1.

    F. Ambrosino et al. (KLOE Collaboration) (2010). arXiv:1006.5313

  2. 2.

    B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 103, 231801 (2009). arxiv:0908.3589

    ADS  Article  Google Scholar 

  3. 3.

    B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 70, 072004 (2004). hep-ex/0408078

    ADS  Article  Google Scholar 

  4. 4.

    B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 71, 052001 (2005). hep-ex/0502025

    ADS  Article  Google Scholar 

  5. 5.

    V.P. Druzhinin, Study of e + e annihilation at low energies. Presented at 23rd International Symposium on Lepton-Photon Interactions at High Energy (LP07), Daegu, Korea, 13–18 Aug 2007, published in Daegu 2007, Lepton and Photon Interactions at High Energies 134. arXiv:0710.3455

  6. 6.

    B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 76, 092005 (2007). Erratum-ibid. D 77, 119902 (2008). arXiv:0708.2461

    ADS  Article  Google Scholar 

  7. 7.

    B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 73, 052003 (2006). hep-ex/0602006

    ADS  Article  Google Scholar 

  8. 8.

    B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 77, 092002 (2008). arXiv:0710.4451

    ADS  Article  Google Scholar 

  9. 9.

    B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 76, 012008 (2007). arXiv:0704.0630

    ADS  Article  Google Scholar 

  10. 10.

    M. Davier, A. Hoecker, B. Malaescu, C.Z. Yuan, Z. Zhang, Eur. Phys. J. C 66, 1 (2010). arXiv:0908.4300

    ADS  Article  Google Scholar 

  11. 11.

    P. Baikov, K.G. Chetyrkin, J.H. Kühn, Phys. Rev. Lett. 101, 012002 (2008). arXiv:0801.1821

    ADS  Article  Google Scholar 

  12. 12.

    G.W. Bennett et al. (Muon g−2 Collaboration), Phys. Rev. D 73, 072003 (2006). hep-ex/0602035

    ADS  Article  Google Scholar 

  13. 13.

    F. Ambrosino et al. (KLOE Collaboration), Phys. Lett. B 670, 285 (2009). arXiv:0809.3950

    ADS  Article  Google Scholar 

  14. 14.

    F. Aloisio et al. (KLOE Collaboration), Phys. Lett. B 606, 12 (2005). hep-ex/0407048

    ADS  Article  Google Scholar 

  15. 15.

    M. Davier et al. Eur. Phys. J. C 66, 127 (2010). arXiv:0906.5443

    ADS  Article  Google Scholar 

  16. 16.

    H. Czyz, J.H. Kühn, Eur. Phys. J. C 18, 497 (2001). hep-ph/0008262

    ADS  Article  Google Scholar 

  17. 17.

    I.B. Vasserman et al. (TOF Collaboration), Sov. J. Nucl. Phys. 33, 368 (1981)

    Google Scholar 

  18. 18.

    L.M. Barkov et al. (OLYA, CMD Collaborations), Nucl. Phys. B 256, 365 (1985)

    ADS  Article  Google Scholar 

  19. 19.

    I.B. Vasserman et al. (OLYA Collaboration), Sov. J. Nucl. Phys. 30, 519 (1979)

    Google Scholar 

  20. 20.

    R.R. Akhmetshin et al. (CMD2 Collaboration), Phys. Lett. B 578, 285 (2004). hep-ex/0308008

    ADS  Article  Google Scholar 

  21. 21.

    V.M. Aulchenko et al. (CMD2 Collaboration), JETP Lett. 82, 743 (2005). hep-ex/0603021

    ADS  Article  Google Scholar 

  22. 22.

    R.R. Akhmetshin et al. (CMD2 Collaboration), JETP Lett. 84, 413 (2006). hep-ex/0610016

    ADS  Article  Google Scholar 

  23. 23.

    R.R. Akhmetshin et al. (CMD2 Collaboration), Phys. Lett. B 648, 28 (2007). hep-ex/0610021

    ADS  Article  Google Scholar 

  24. 24.

    M.N. Achasov et al. (SND Collaboration), JETP Lett. 103, 380 (2006)

    Google Scholar 

  25. 25.

    A. Quenzer et al. (DM1 Collaboration), Phys. Lett. B 76, 512 (1978)

    ADS  Article  Google Scholar 

  26. 26.

    D. Bisello et al. (DM2 Collaboration), Phys. Lett. B 220, 321 (1989)

    ADS  Article  Google Scholar 

  27. 27.

    S.J. Dolinsky et al. (ND Collaboration), Phys. Rep. C 202, 99 (1991)

    ADS  Article  Google Scholar 

  28. 28.

    A. Cordier et al. (DM1 Collaboration), Nucl. Phys. B 172, 13 (1980)

    ADS  Article  Google Scholar 

  29. 29.

    M.N. Achasov et al. (SND Collaboration), Phys. Rev. D 66, 032001 (2002)

    ADS  Article  Google Scholar 

  30. 30.

    L.M. Barkov et al. (CMD Collaboration), Preprint INP 89-15, Novosibirsk (1989)

  31. 31.

    R.R. Akhmetshin et al. (CMD2 Collaboration), Phys. Lett. B 642, 203 (2006)

    ADS  Article  Google Scholar 

  32. 32.

    M. Davier, S. Eidelman, A. Hoecker, Z. Zhang, Eur. Phys. J. C 27, 497 (2003). hep-ph/0208177

    ADS  Article  Google Scholar 

  33. 33.

    M. Davier, S. Eidelman, A. Hoecker, Z. Zhang, Eur. Phys. J. C 31, 503 (2003). hep-ph/0308213

    ADS  Article  Google Scholar 

  34. 34.

    S.J. Dolinsky et al. (ND Collaboration), Phys. Rep. C 202, 99 (1991)

    ADS  Article  Google Scholar 

  35. 35.

    G. Cosme et al., Nucl. Phys. B 152, 215 (1979)

    ADS  Article  Google Scholar 

  36. 36.

    C. Paulot, Ph.D. Thesis, Preprint LAL-79-14, Orsay, 1979

  37. 37.

    B. Esposito et al. (MEA Collaboration), Lett. Nuovo Cimento 28, 195 (1980)

    Article  Google Scholar 

  38. 38.

    L.M. Barkov et al. (CMD Collaboration), Sov. J. Nucl. Phys. 47, 248 (1988)

    Google Scholar 

  39. 39.

    A. Cordier et al. (DM1 Collaboration), Phys. Lett. B 109, 129 (1982)

    ADS  Article  Google Scholar 

  40. 40.

    A. Cordier et al. (DM1 Collaboration), Phys. Lett. B 81, 389 (1979)

    ADS  Article  Google Scholar 

  41. 41.

    D. Bisello (for the DM2 Collaboration), Nucl. Phys. B 21(Proc. Suppl.), 111 (1991)

    Google Scholar 

  42. 42.

    D. Bisello et al. (DM2 Collaboration), Report LAL-90-35, Orsay (1990)

  43. 43.

    L. Stanco (for the DM2 Collaboration), in Proceedings of Hadron-91, World Scientific ed. 84 (World Scientific, Singapore, 1992)

    Google Scholar 

  44. 44.

    L.M. Kurdadze et al. (OLYA Collaboration), JETP Lett. 47, 512 (1988)

    ADS  Google Scholar 

  45. 45.

    R.R. Akhmetshin et al. (CMD2 Collaboration), Phys. Lett. B 466, 392 (1999). hep-ex/9904024

    ADS  Article  Google Scholar 

  46. 46.

    M.N. Achasov et al. (SND Collaboration), Preprint BudkerINP 2001-34, Novosibirsk (2001)

  47. 47.

    M.N. Achasov et al. (SND Collaboration), J. Exp. Theor. Phys. 96, 789 (2003)

    ADS  Article  Google Scholar 

  48. 48.

    G. Cosme et al. (M3N Collaboration), Nucl. Phys. B 152, 215 (1979)

    ADS  Article  Google Scholar 

  49. 49.

    C. Paulot, Thesis, LAL-79-14, Orsay (1979)

  50. 50.

    L.M. Kurdadze et al. (OLYA Collaboration), JETP Lett. 43, 643 (1986)

    ADS  Google Scholar 

  51. 51.

    J. Burmester et al. (PLUTO Collaboration), Phys. Lett. B 66, 395 (1977)

    ADS  Article  Google Scholar 

  52. 52.

    C. Berger et al. (PLUTO Collaboration), Phys. Lett. B 81, 410 (1979)

    ADS  Article  Google Scholar 

  53. 53.

    L. Criegee, G. Knies, Phys. Rep. C 83, 151 (1982)

    ADS  Article  Google Scholar 

  54. 54.

    Z. Jakubowski et al. (Crystal Ball Collaboration), Z. Phys. C 40, 49 (1988)

    ADS  Article  Google Scholar 

  55. 55.

    C. Edwards et al. (Crystal Ball Collaboration), SLAC-PUB-5160 (1990)

  56. 56.

    J.Z. Bai et al. (BES Collaboration), Phys. Rev. Lett. 84, 594 (2000). hep-ex/9908046

    ADS  Article  Google Scholar 

  57. 57.

    J.Z. Bai et al. (BES Collaboration), Phys. Rev. Lett. 88, 101802 (2002). hep-ex/0102003

    ADS  Article  Google Scholar 

  58. 58.

    M. Ablikim et al. (BES Collaboration), Phys. Lett. B 641, 145 (2006). hep-ex/0605105

    ADS  Article  Google Scholar 

  59. 59.

    M. Ablikim et al. (BES Collaboration), Phys. Lett. B 677, 239 (2009). arXiv:0903.0900

    ADS  Article  Google Scholar 

  60. 60.

    A. Bäcker, Preprint DESY F33-77/03 (1977)

  61. 61.

    G. Bonneau, F. Martin, Nucl. Phys. B 27, 381 (1971)

    ADS  Article  Google Scholar 

  62. 62.

    K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010)

    ADS  Article  Google Scholar 

  63. 63.

    A. Pais, Ann. Phys. 9, 548 (1960)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  64. 64.

    K.G. Chetyrkin, J.H. Kühn, M. Steinhauser, Nucl. Phys. B 482, 213 (1996). hep-ph/9606230

    ADS  Article  Google Scholar 

  65. 65.

    M. Davier, A. Hoecker, Phys. Lett. B 419, 419 (1998). hep-ph/9801361

    ADS  Article  Google Scholar 

  66. 66.

    H. Flaecher, M. Goebel, J. Haller, A. Hoecker, K. Moening, J. Stelzer, Eur. Phys. J. C 60, 543 (2009). arXiv:0811.0009. Updated results taken from: http://cern.ch/gfitter

    ADS  Article  Google Scholar 

  67. 67.

    F. Le Diberder, A. Pich, Phys. Lett. B 286, 147 (1992)

    ADS  Article  Google Scholar 

  68. 68.

    A. Hoecker, W. Marciano, The muon anomalous magnetic moment, in: Particle Data Group (K. Nakamura et al.). J. Phys. G 37, 075021 (2010)

    Article  Google Scholar 

  69. 69.

    T. Teubner, Talk given at Tau 2010 Workshop, Manchester, UK, 13–17 Sep 2010

  70. 70.

    K. Hagiwara, A.D. Martin, D. Nomura, T. Teubner, Phys. Lett. B 649, 173 (2007). hep-ph/0611102

    ADS  Article  Google Scholar 

  71. 71.

    F. Jegerlehner, A. Nyffeler, Phys. Rep. 477, 1 (2009). arXiv:0902.3360

    ADS  Article  Google Scholar 

  72. 72.

    J. Prades, E. de Rafael, A. Vainshtein, UG-FT-242-08, CAFPE-112-08, CPT-P092-2008, FTPI-MINN-08-41, UMN-TH-2723-08, (2009). arXiv:0901.0306

  73. 73.

    T. Kinoshita, M. Nio, Phys. Rev. D 73, 013003 (2006). hep-ph/0507249

    ADS  Article  Google Scholar 

  74. 74.

    R. Jackiw, S. Weinberg, Phys. Rev. D 5, 2396 (1972)

    ADS  Article  Google Scholar 

  75. 75.

    A. Czarnecki, W.J. Marciano, A. Vainshtein, Phys. Rev. D 67, 073006 (2003). Erratum-ibid. D 73, 119901 (2006). hep-ph/0212229

    ADS  Article  Google Scholar 

  76. 76.

    M. Knecht, S. Peris, M. Perrottet, E. de Rafael, J. High Energy Phys. 0211, 003 (2002). hep-ph/0205102

    ADS  Article  Google Scholar 

  77. 77.

    A. Nyffeler, Phys. Rev. D 79, 073012 (2009). arXiv:0901.1172

    ADS  Article  Google Scholar 

  78. 78.

    R. Alemany, M. Davier, A. Hoecker, Eur. Phys. J. C 2, 123 (1998). hep-ph/9703220

    ADS  Google Scholar 

  79. 79.

    S. Schael et al. (ALEPH Collaboration), Phys. Rep. 421, 191 (2005). hep-ex/0506072

    ADS  Article  Google Scholar 

  80. 80.

    M. Fujikawa et al. (Belle Collaboration), Phys. Rev. D 78, 072006 (2008). arXiv:0805.3773

    ADS  Article  Google Scholar 

  81. 81.

    S. Anderson et al. (CLEO Collaboration), Phys. Rev. D 61, 112002 (2000). hep-ex/9910046

    ADS  Article  Google Scholar 

  82. 82.

    K. Ackerstaff et al. (OPAL Collaboration), Eur. Phys. J. C 7, 571 (1999). hep-ex/9808019

    ADS  Article  Google Scholar 

  83. 83.

    M. Steinhauser, Phys. Lett. B 429, 158 (1998). hep-ph/9803313

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Hoecker.

Additional information

Now at CERN, 1211, Geneva 23, Switzerland.

An erratum to this article can be found at http://dx.doi.org/10.1140/epjc/s10052-012-1874-8.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Davier, M., Hoecker, A., Malaescu, B. et al. Reevaluation of the hadronic contributions to the muon g−2 and to \(\alpha (M^{2}_{Z})\) . Eur. Phys. J. C 71, 1515 (2011). https://doi.org/10.1140/epjc/s10052-010-1515-z

Download citation

Keywords

  • BABAR Collaboration
  • Hadronic Contribution
  • BABAR Data
  • Conserve Vector Current
  • KLOE Collaboration