Advertisement

Reevaluation of the hadronic contributions to the muon g−2 and to \(\alpha (M^{2}_{Z})\)

  • M. Davier
  • A. Hoecker
  • B. Malaescu
  • Z. Zhang
Open Access
Regular Article - Experimental Physics

Abstract

We reevaluate the hadronic contributions to the muon magnetic anomaly, and to the running of the electromagnetic coupling constant at the Z-boson mass. We include new π + π cross-section data from KLOE, all available multi-hadron data from BABAR, a reestimation of missing low-energy contributions using results on cross sections and process dynamics from BABAR, a reevaluation of all experimental contributions using the software package HVPTools together with a reanalysis of inter-experiment and inter-channel correlations, and a reevaluation of the continuum contributions from perturbative QCD at four loops. These improvements lead to a decrease in the hadronic contributions with respect to earlier evaluations. For the muon g−2 we find lowest-order hadronic contributions of (692.3±4.2)⋅10−10 and (701.5±4.7)⋅10−10 for the e + e -based and τ-based analyses, respectively, and full Standard Model predictions that differ by 3.6σ and 2.4σ from the experimental value. For the e + e -based five-quark hadronic contribution to \(\alpha(M_{Z}^{2})\) we find \(\varDelta \alpha_{\mathrm{had}}^{(5)}(M_{Z}^{2}) =(274.9\pm1.0)\cdot10^{-4}\). The reduced electromagnetic coupling strength at M Z leads to an increase by 12 GeV in the central value of the Higgs boson mass obtained by the standard Gfitter fit to electroweak precision data.

Keywords

BABAR Collaboration Hadronic Contribution BABAR Data Conserve Vector Current KLOE Collaboration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    F. Ambrosino et al. (KLOE Collaboration) (2010). arXiv:1006.5313
  2. 2.
    B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 103, 231801 (2009). arxiv:0908.3589 ADSCrossRefGoogle Scholar
  3. 3.
    B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 70, 072004 (2004). hep-ex/0408078 ADSCrossRefGoogle Scholar
  4. 4.
    B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 71, 052001 (2005). hep-ex/0502025 ADSCrossRefGoogle Scholar
  5. 5.
    V.P. Druzhinin, Study of e + e annihilation at low energies. Presented at 23rd International Symposium on Lepton-Photon Interactions at High Energy (LP07), Daegu, Korea, 13–18 Aug 2007, published in Daegu 2007, Lepton and Photon Interactions at High Energies 134. arXiv:0710.3455
  6. 6.
    B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 76, 092005 (2007). Erratum-ibid. D 77, 119902 (2008). arXiv:0708.2461 ADSCrossRefGoogle Scholar
  7. 7.
    B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 73, 052003 (2006). hep-ex/0602006 ADSCrossRefGoogle Scholar
  8. 8.
    B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 77, 092002 (2008). arXiv:0710.4451 ADSCrossRefGoogle Scholar
  9. 9.
    B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 76, 012008 (2007). arXiv:0704.0630 ADSCrossRefGoogle Scholar
  10. 10.
    M. Davier, A. Hoecker, B. Malaescu, C.Z. Yuan, Z. Zhang, Eur. Phys. J. C 66, 1 (2010). arXiv:0908.4300 ADSCrossRefGoogle Scholar
  11. 11.
    P. Baikov, K.G. Chetyrkin, J.H. Kühn, Phys. Rev. Lett. 101, 012002 (2008). arXiv:0801.1821 ADSCrossRefGoogle Scholar
  12. 12.
    G.W. Bennett et al. (Muon g−2 Collaboration), Phys. Rev. D 73, 072003 (2006). hep-ex/0602035 ADSCrossRefGoogle Scholar
  13. 13.
    F. Ambrosino et al. (KLOE Collaboration), Phys. Lett. B 670, 285 (2009). arXiv:0809.3950 ADSCrossRefGoogle Scholar
  14. 14.
    F. Aloisio et al. (KLOE Collaboration), Phys. Lett. B 606, 12 (2005). hep-ex/0407048 ADSCrossRefGoogle Scholar
  15. 15.
    M. Davier et al. Eur. Phys. J. C 66, 127 (2010). arXiv:0906.5443 ADSCrossRefGoogle Scholar
  16. 16.
    H. Czyz, J.H. Kühn, Eur. Phys. J. C 18, 497 (2001). hep-ph/0008262 ADSCrossRefGoogle Scholar
  17. 17.
    I.B. Vasserman et al. (TOF Collaboration), Sov. J. Nucl. Phys. 33, 368 (1981) Google Scholar
  18. 18.
    L.M. Barkov et al. (OLYA, CMD Collaborations), Nucl. Phys. B 256, 365 (1985) ADSCrossRefGoogle Scholar
  19. 19.
    I.B. Vasserman et al. (OLYA Collaboration), Sov. J. Nucl. Phys. 30, 519 (1979) Google Scholar
  20. 20.
    R.R. Akhmetshin et al. (CMD2 Collaboration), Phys. Lett. B 578, 285 (2004). hep-ex/0308008 ADSCrossRefGoogle Scholar
  21. 21.
    V.M. Aulchenko et al. (CMD2 Collaboration), JETP Lett. 82, 743 (2005). hep-ex/0603021 ADSCrossRefGoogle Scholar
  22. 22.
    R.R. Akhmetshin et al. (CMD2 Collaboration), JETP Lett. 84, 413 (2006). hep-ex/0610016 ADSCrossRefGoogle Scholar
  23. 23.
    R.R. Akhmetshin et al. (CMD2 Collaboration), Phys. Lett. B 648, 28 (2007). hep-ex/0610021 ADSCrossRefGoogle Scholar
  24. 24.
    M.N. Achasov et al. (SND Collaboration), JETP Lett. 103, 380 (2006) Google Scholar
  25. 25.
    A. Quenzer et al. (DM1 Collaboration), Phys. Lett. B 76, 512 (1978) ADSCrossRefGoogle Scholar
  26. 26.
    D. Bisello et al. (DM2 Collaboration), Phys. Lett. B 220, 321 (1989) ADSCrossRefGoogle Scholar
  27. 27.
    S.J. Dolinsky et al. (ND Collaboration), Phys. Rep. C 202, 99 (1991) ADSCrossRefGoogle Scholar
  28. 28.
    A. Cordier et al. (DM1 Collaboration), Nucl. Phys. B 172, 13 (1980) ADSCrossRefGoogle Scholar
  29. 29.
    M.N. Achasov et al. (SND Collaboration), Phys. Rev. D 66, 032001 (2002) ADSCrossRefGoogle Scholar
  30. 30.
    L.M. Barkov et al. (CMD Collaboration), Preprint INP 89-15, Novosibirsk (1989) Google Scholar
  31. 31.
    R.R. Akhmetshin et al. (CMD2 Collaboration), Phys. Lett. B 642, 203 (2006) ADSCrossRefGoogle Scholar
  32. 32.
    M. Davier, S. Eidelman, A. Hoecker, Z. Zhang, Eur. Phys. J. C 27, 497 (2003). hep-ph/0208177 ADSCrossRefGoogle Scholar
  33. 33.
    M. Davier, S. Eidelman, A. Hoecker, Z. Zhang, Eur. Phys. J. C 31, 503 (2003). hep-ph/0308213 ADSCrossRefGoogle Scholar
  34. 34.
    S.J. Dolinsky et al. (ND Collaboration), Phys. Rep. C 202, 99 (1991) ADSCrossRefGoogle Scholar
  35. 35.
    G. Cosme et al., Nucl. Phys. B 152, 215 (1979) ADSCrossRefGoogle Scholar
  36. 36.
    C. Paulot, Ph.D. Thesis, Preprint LAL-79-14, Orsay, 1979 Google Scholar
  37. 37.
    B. Esposito et al. (MEA Collaboration), Lett. Nuovo Cimento 28, 195 (1980) CrossRefGoogle Scholar
  38. 38.
    L.M. Barkov et al. (CMD Collaboration), Sov. J. Nucl. Phys. 47, 248 (1988) Google Scholar
  39. 39.
    A. Cordier et al. (DM1 Collaboration), Phys. Lett. B 109, 129 (1982) ADSCrossRefGoogle Scholar
  40. 40.
    A. Cordier et al. (DM1 Collaboration), Phys. Lett. B 81, 389 (1979) ADSCrossRefGoogle Scholar
  41. 41.
    D. Bisello (for the DM2 Collaboration), Nucl. Phys. B 21(Proc. Suppl.), 111 (1991) Google Scholar
  42. 42.
    D. Bisello et al. (DM2 Collaboration), Report LAL-90-35, Orsay (1990) Google Scholar
  43. 43.
    L. Stanco (for the DM2 Collaboration), in Proceedings of Hadron-91, World Scientific ed. 84 (World Scientific, Singapore, 1992) Google Scholar
  44. 44.
    L.M. Kurdadze et al. (OLYA Collaboration), JETP Lett. 47, 512 (1988) ADSGoogle Scholar
  45. 45.
    R.R. Akhmetshin et al. (CMD2 Collaboration), Phys. Lett. B 466, 392 (1999). hep-ex/9904024 ADSCrossRefGoogle Scholar
  46. 46.
    M.N. Achasov et al. (SND Collaboration), Preprint BudkerINP 2001-34, Novosibirsk (2001) Google Scholar
  47. 47.
    M.N. Achasov et al. (SND Collaboration), J. Exp. Theor. Phys. 96, 789 (2003) ADSCrossRefGoogle Scholar
  48. 48.
    G. Cosme et al. (M3N Collaboration), Nucl. Phys. B 152, 215 (1979) ADSCrossRefGoogle Scholar
  49. 49.
    C. Paulot, Thesis, LAL-79-14, Orsay (1979) Google Scholar
  50. 50.
    L.M. Kurdadze et al. (OLYA Collaboration), JETP Lett. 43, 643 (1986) ADSGoogle Scholar
  51. 51.
    J. Burmester et al. (PLUTO Collaboration), Phys. Lett. B 66, 395 (1977) ADSCrossRefGoogle Scholar
  52. 52.
    C. Berger et al. (PLUTO Collaboration), Phys. Lett. B 81, 410 (1979) ADSCrossRefGoogle Scholar
  53. 53.
    L. Criegee, G. Knies, Phys. Rep. C 83, 151 (1982) ADSCrossRefGoogle Scholar
  54. 54.
    Z. Jakubowski et al. (Crystal Ball Collaboration), Z. Phys. C 40, 49 (1988) ADSCrossRefGoogle Scholar
  55. 55.
    C. Edwards et al. (Crystal Ball Collaboration), SLAC-PUB-5160 (1990) Google Scholar
  56. 56.
    J.Z. Bai et al. (BES Collaboration), Phys. Rev. Lett. 84, 594 (2000). hep-ex/9908046 ADSCrossRefGoogle Scholar
  57. 57.
    J.Z. Bai et al. (BES Collaboration), Phys. Rev. Lett. 88, 101802 (2002). hep-ex/0102003 ADSCrossRefGoogle Scholar
  58. 58.
    M. Ablikim et al. (BES Collaboration), Phys. Lett. B 641, 145 (2006). hep-ex/0605105 ADSCrossRefGoogle Scholar
  59. 59.
    M. Ablikim et al. (BES Collaboration), Phys. Lett. B 677, 239 (2009). arXiv:0903.0900 ADSCrossRefGoogle Scholar
  60. 60.
    A. Bäcker, Preprint DESY F33-77/03 (1977) Google Scholar
  61. 61.
    G. Bonneau, F. Martin, Nucl. Phys. B 27, 381 (1971) ADSCrossRefGoogle Scholar
  62. 62.
    K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010) ADSCrossRefGoogle Scholar
  63. 63.
    A. Pais, Ann. Phys. 9, 548 (1960) MathSciNetADSzbMATHCrossRefGoogle Scholar
  64. 64.
    K.G. Chetyrkin, J.H. Kühn, M. Steinhauser, Nucl. Phys. B 482, 213 (1996). hep-ph/9606230 ADSCrossRefGoogle Scholar
  65. 65.
    M. Davier, A. Hoecker, Phys. Lett. B 419, 419 (1998). hep-ph/9801361 ADSCrossRefGoogle Scholar
  66. 66.
    H. Flaecher, M. Goebel, J. Haller, A. Hoecker, K. Moening, J. Stelzer, Eur. Phys. J. C 60, 543 (2009). arXiv:0811.0009. Updated results taken from: http://cern.ch/gfitter ADSCrossRefGoogle Scholar
  67. 67.
    F. Le Diberder, A. Pich, Phys. Lett. B 286, 147 (1992) ADSCrossRefGoogle Scholar
  68. 68.
    A. Hoecker, W. Marciano, The muon anomalous magnetic moment, in: Particle Data Group (K. Nakamura et al.). J. Phys. G 37, 075021 (2010) CrossRefGoogle Scholar
  69. 69.
    T. Teubner, Talk given at Tau 2010 Workshop, Manchester, UK, 13–17 Sep 2010 Google Scholar
  70. 70.
    K. Hagiwara, A.D. Martin, D. Nomura, T. Teubner, Phys. Lett. B 649, 173 (2007). hep-ph/0611102 ADSCrossRefGoogle Scholar
  71. 71.
    F. Jegerlehner, A. Nyffeler, Phys. Rep. 477, 1 (2009). arXiv:0902.3360 ADSCrossRefGoogle Scholar
  72. 72.
    J. Prades, E. de Rafael, A. Vainshtein, UG-FT-242-08, CAFPE-112-08, CPT-P092-2008, FTPI-MINN-08-41, UMN-TH-2723-08, (2009). arXiv:0901.0306
  73. 73.
    T. Kinoshita, M. Nio, Phys. Rev. D 73, 013003 (2006). hep-ph/0507249 ADSCrossRefGoogle Scholar
  74. 74.
    R. Jackiw, S. Weinberg, Phys. Rev. D 5, 2396 (1972) ADSCrossRefGoogle Scholar
  75. 75.
    A. Czarnecki, W.J. Marciano, A. Vainshtein, Phys. Rev. D 67, 073006 (2003). Erratum-ibid. D 73, 119901 (2006). hep-ph/0212229 ADSCrossRefGoogle Scholar
  76. 76.
    M. Knecht, S. Peris, M. Perrottet, E. de Rafael, J. High Energy Phys. 0211, 003 (2002). hep-ph/0205102 ADSCrossRefGoogle Scholar
  77. 77.
    A. Nyffeler, Phys. Rev. D 79, 073012 (2009). arXiv:0901.1172 ADSCrossRefGoogle Scholar
  78. 78.
    R. Alemany, M. Davier, A. Hoecker, Eur. Phys. J. C 2, 123 (1998). hep-ph/9703220 ADSGoogle Scholar
  79. 79.
    S. Schael et al. (ALEPH Collaboration), Phys. Rep. 421, 191 (2005). hep-ex/0506072 ADSCrossRefGoogle Scholar
  80. 80.
    M. Fujikawa et al. (Belle Collaboration), Phys. Rev. D 78, 072006 (2008). arXiv:0805.3773 ADSCrossRefGoogle Scholar
  81. 81.
    S. Anderson et al. (CLEO Collaboration), Phys. Rev. D 61, 112002 (2000). hep-ex/9910046 ADSCrossRefGoogle Scholar
  82. 82.
    K. Ackerstaff et al. (OPAL Collaboration), Eur. Phys. J. C 7, 571 (1999). hep-ex/9808019 ADSCrossRefGoogle Scholar
  83. 83.
    M. Steinhauser, Phys. Lett. B 429, 158 (1998). hep-ph/9803313 ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

Authors and Affiliations

  1. 1.Laboratoire de l’Accélérateur Linéaire, IN2P3/CNRSUniversité Paris-Sud 11OrsayFrance
  2. 2.CERNGeneva 23Switzerland

Personalised recommendations