The European Physical Journal C

, Volume 70, Issue 4, pp 1009–1015 | Cite as

The rotating mass matrix, the strong CP problem and Higgs decay

  • Michael J. BakerEmail author
  • Tsou Sheung Tsun
Regular Article - Theoretical Physics


We first show that the rotating mass matrix hypothesis suggested earlier, where the massive eigenvector of a rank-one mass matrix changes with renormalisation scale, is consistent with the latest experimental data on fermion mass hierarchy and mixing, including the CP violating KM phase. We obtain thereby a smooth trajectory for the massive eigenvector as a function of the scale. Using this trajectory we next study Higgs decay and find suppression of \(\varGamma(H\rightarrow c\bar{c})\) compared to the standard model predictions for a range of Higgs masses. We also give limits for flavour-violating decays, including a relatively large branching ratio for the τ μ + mode.


Mass Matrix Higgs Masse Stereographic Projection Standard Model Prediction Higgs Decay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Fritzsch, Quark masses and flavor mixing. Nucl. Phys. B 155, 189 (1979) CrossRefADSGoogle Scholar
  2. 2.
    J. Bordes, H.-M. Chan, J. Faridani, J. Pfaudler, S.T. Tsou, CKM matrix and fermion masses in the dualized standard model. Phys. Rev. D 58, 013004 (1998). arXiv:hep-ph/9712276 CrossRefADSGoogle Scholar
  3. 3.
    J. Bordes, H.-M. Chan, S.T. Tsou, Circumstantial evidence for rotating mass matrix from fermion mass and mixing data. Eur. Phys. J. C 27, 189 (2003). arXiv:hep-ph/0203124 CrossRefADSGoogle Scholar
  4. 4.
    J. Bordes, H.-M. Chan, S.T. Tsou, A solution of the strong CP problem transforming the theta-angle to the KM CP-violating phase. Int. J. Math. Phys. A (2010). arXiv:1002.3542 [hep-ph]
  5. 5.
    J. Bordes, H.-M. Chan, S.T. Tsou, Possible anomalies in Higgs decay: charm suppression and flavour-violation. Eur. Phys. J. C 65, 537 (2010). arXiv:0908.1750 [hep-ph] CrossRefADSGoogle Scholar
  6. 6.
    H.-M. Chan, S.T. Tsou, A model behind the standard model. Eur. Phys. J. C 52, 635 (2007). arXiv:hep-ph/0611364 CrossRefADSGoogle Scholar
  7. 7.
    S. Weinberg, Perturbative calculations of symmetry breaking. Phys. Rev. D 7, 2887 (1973) CrossRefADSGoogle Scholar
  8. 8.
    K.J. Le Couteur, The structure of a non-relativistic S-matrix. Proc. R. Soc. Lond. A256, 115 (1960) ADSGoogle Scholar
  9. 9.
    R.G. Newton, Structure of the many-channel S matrix. J. Math. Phys. 2, 188 (1961) CrossRefADSGoogle Scholar
  10. 10.
    J. Bordes, H.-M. Chan, S.T. Tsou, New angle on the strong CP and chiral symmetry problems from a rotating mass matrix. Int. J. Mod. Phys. A 24, 101 (2009). arXiv:0707.3358 [hep-ph] CrossRefADSGoogle Scholar
  11. 11.
    S. Weinberg, The Quantum Theory of Fields. Modern Applications, vol. 2 (Cambridge University Press, Cambridge, 1996), 489 pp. Google Scholar
  12. 12.
    C.A. Baker et al., An improved experimental limit on the electric dipole moment of the neutron. Phys. Rev. Lett. 97, 131801 (2006). arXiv:hep-ex/0602020 CrossRefADSGoogle Scholar
  13. 13.
    C. Amsler et al. (Particle Data Group), Review of particle physics. Phys. Lett. B 667, 1 (2008) and 2009 partial update for the 2010 edition CrossRefADSGoogle Scholar
  14. 14.
    M. Spira, HDECAY version 3.51 (July 2009). Available:

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2010

Authors and Affiliations

  1. 1.Mathematical InstituteUniversity of OxfordOxfordUK

Personalised recommendations