Advertisement

The European Physical Journal C

, Volume 70, Issue 4, pp 1061–1069 | Cite as

Analyses of multiplicity distributions with η c and Bose–Einstein correlations at LHC by means of generalized Glauber–Lachs formula

  • Takuya MizoguchiEmail author
  • Minoru Biyajima
Regular Article - Theoretical Physics

Abstract

Using the negative binomial distribution (NBD) and the generalized Glauber–Lachs (GGL) formula, we analyze the data on charged multiplicity distributions with pseudo-rapidity cutoffs η c at 0.9, 2.36, and 7 TeV by ALICE Collaboration and at 0.2, 0.54, and 0.9 TeV by UA5 Collaboration. We confirm that the KNO scaling holds among the multiplicity distributions with η c =0.5 at \(\sqrt{s} = 0.2\)–2.36 TeV and estimate the energy dependence of a parameter 1/k in NBD and parameters 1/k and γ (the ratio of the average value of the coherent hadrons to that of the chaotic hadrons) in the GGL formula. Using empirical formulas for the parameters 1/k and γ in the GGL formula, we predict the multiplicity distributions with η c =0.5 at 7 and 14 TeV. Data on the second order Bose–Einstein correlations (BEC) at 0.9 TeV by ALICE Collaboration and 0.9 and 2.36 TeV by CMS Collaboration are also analyzed based on the GGL formula. Prediction for the third order BEC at 0.9 and 2.36 TeV are presented. Moreover, the information entropy is discussed.

Keywords

Energy Dependence Information Entropy Negative Binomial Distribution Multiplicity Distribution ALICE Collaboration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Aamodt et al. (ALICE Collaboration), Eur. Phys. J. C 68, 89 (2010) CrossRefADSGoogle Scholar
  2. 2.
    G.J. Alner et al. (UA5 Collaboration), Phys. Lett. B 160, 193 (1985) CrossRefADSGoogle Scholar
  3. 3.
    R.E. Ansorge et al. (UA5 Collaboration), Z. Phys. C 43, 357 (1989) ADSGoogle Scholar
  4. 4.
    J.F. Grosse-Oetringhaus, K. Reygers, J. Phys. G 37, 083001 (2010) CrossRefADSGoogle Scholar
  5. 5.
    Ch. Fuglesang, in Multiparticle Dynamics-Festschrift for Leon Van Hove and Proceedings, La Thuile, Italy (1990) Google Scholar
  6. 6.
    Z. Koba, H.B. Nielsen, P. Olesen, Nucl. Phys. B 40, 317 (1972) CrossRefADSGoogle Scholar
  7. 7.
    M. Biyajima, Prog. Theor. Phys. 69, 966 (1983) [Addendum-ibid. 70, 1468 (1983)] CrossRefADSGoogle Scholar
  8. 8.
    M. Biyajima, Phys. Lett. 137B, 225 (1984) [Addendum-ibid. 140B, 435 (1984)] ADSGoogle Scholar
  9. 9.
    M. Biyajima, N. Suzuki, Phys. Lett. B 143, 463 (1984) CrossRefADSGoogle Scholar
  10. 10.
    K. Aamodt et al. (ALICE Collaboration), Eur. Phys. J. C 68, 345 (2010) CrossRefADSGoogle Scholar
  11. 11.
    K. Aamodt et al. (ALICE Collaboration), arXiv:1007.0516 [hep-ex]
  12. 12.
    V. Khachatryan et al. (CMS Collaboration), Phys. Rev. Lett. 105, 032001 (2010) CrossRefADSGoogle Scholar
  13. 13.
    R.J. Glauber, in Proceedings of Physics of Quantum Electronics, ed. by P.L. Kelley et al. (McGraw-Hill, New York, 1965), p. 788 Google Scholar
  14. 14.
    G. Lachs, Phys. Rev. 138, B1012 (1965) CrossRefMathSciNetADSGoogle Scholar
  15. 15.
    G. Goldhaber, S. Goldhaber, W.Y. Lee, A. Pais, Phys. Rev. 120, 300 (1960) CrossRefMathSciNetADSGoogle Scholar
  16. 16.
    M. Biyajima, A. Bartl, T. Mizoguchi, O. Terazawa, N. Suzuki, Prog. Theor. Phys. 84, 931 (1990) [Addendum-ibid. 88, 157 (1992)] CrossRefADSGoogle Scholar
  17. 17.
    R.M. Weiner, Bose–Einstein Correlations in Particle and Nuclear Physics: A Collection of Reprints (Wiley, Chichester, 1997) Google Scholar
  18. 18.
    G. Alexander, Rep. Prog. Phys. 66, 481 (2003) CrossRefADSGoogle Scholar
  19. 19.
    A. Giovannini, R. Ugoccioni, Phys. Rev. D 59, 094020 (1999) [Erratum-ibid. D 69, 059903 (2004)] CrossRefADSGoogle Scholar
  20. 20.
    R. Shimoda, M. Biyajima, N. Suzuki, Prog. Theor. Phys. 89, 697 (1993) CrossRefADSGoogle Scholar
  21. 21.
    N. Neumeister et al. (UA1-Minimum Bias-Collaboration), Phys. Lett. B 275, 186 (1992). In their analyses an exponential form should read \(r=R\sqrt{n(n-1)/2}\) in higher order n CrossRefADSGoogle Scholar
  22. 22.
    V. Simak, M. Sumbera, I. Zborovsky, Phys. Lett. B 206, 159 (1988) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2010

Authors and Affiliations

  1. 1.Toba National College of Maritime TechnologyTobaJapan
  2. 2.Department of Physics and College of General EducationShinshu UniversityMatsumotoJapan

Personalised recommendations