Advertisement

The European Physical Journal C

, Volume 70, Issue 4, pp 1153–1164 | Cite as

Eikonal equation of the Lorentz-violating Maxwell theory

  • Zhi Xiao
  • Lijing Shao
  • Bo-Qiang MaEmail author
Regular Article - Theoretical Physics

Abstract

We derive the eikonal equation of light wavefront in the presence of Lorentz invariance violation (LIV) from the photon sector of the standard model extension (SME). The results obtained from the equations of the E and B fields, respectively, are the same. This guarantees the self-consistency of our derivation. We adopt a simple case with only one non-zero LIV parameter as an illustration, from which we find two points. One is that, in analogy with the Hamilton–Jacobi equation, from the eikonal equation, we can derive dispersion relations which are compatible with results obtained from other approaches. The other is that the wavefront velocity is the same as the group velocity, as well as the energy flow velocity. If further we define the signal velocity v s as the front velocity, there always exists a mode with v s >1; hence causality is violated classically. Thus, our method might be useful in the analysis of Lorentz violation in QED in terms of classical causality.

Keywords

Group Velocity Maxwell Equation Jacobi Equation Rotational Invariance Eikonal Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Hossenfelder, L. Smolin, Phys. Can. 66, 99 (2010). arXiv:0911.2761 [physics] Google Scholar
  2. 2.
    V.A. Kostelecký, S. Samuel, Phys. Rev. Lett. 63, 224 (1989) CrossRefADSGoogle Scholar
  3. 3.
    V.A. Kostelecký, S. Samuel, Phys. Rev. Lett. 66, 1811 (1991) CrossRefADSGoogle Scholar
  4. 4.
    V.A. Kostelecký, S. Samuel, Phys. Rev. D 39, 683 (1989) CrossRefADSGoogle Scholar
  5. 5.
    V.A. Kostelecký, S. Samuel, Phys. Rev. D 40, 1886 (1989) CrossRefADSGoogle Scholar
  6. 6.
    D. Colladay, V.A. Kostelecký, Phys. Rev. D 55, 6760 (1997) CrossRefADSGoogle Scholar
  7. 7.
    D. Colladay, V.A. Kostelecký, Phys. Rev. D 58, 116002 (1998) CrossRefADSGoogle Scholar
  8. 8.
    R. Gambini, J. Pullin, Phys. Rev. D 59, 124021 (1999) CrossRefMathSciNetADSGoogle Scholar
  9. 9.
    J. Alfaro, H.A. Morales-Técotl, L.F. Urrutia, Phys. Rev. Lett. 84, 2318 (2000) CrossRefADSGoogle Scholar
  10. 10.
    J. Magueijo, L. Smolin, Phys. Rev. Lett. 88, 190403 (2002) CrossRefADSGoogle Scholar
  11. 11.
    J. Magueijo, L. Smolin, Phys. Rev. D 67, 044017 (2003) CrossRefMathSciNetADSGoogle Scholar
  12. 12.
    G. Amelino-Camelia, Int. J. Mod. Phys. D 11, 1643 (2002) zbMATHMathSciNetADSGoogle Scholar
  13. 13.
    G. Amelino-Camelia, J. Ellis, N.E. Mavromatos, D.V. Nanopoulos, S. Sarkar, Nature 393, 763 (1998) CrossRefADSGoogle Scholar
  14. 14.
    S.M. Carroll, J.A. Harvey, V.A. Kostelecký, C.D. Lane, T. Okamoto, Phys. Rev. Lett. 87, 141601 (2001) CrossRefMathSciNetADSGoogle Scholar
  15. 15.
    C. Barcelo, M. Visser, S. Liberati, Int. J. Mod. Phys. D 10, 799 (2001) zbMATHMathSciNetADSGoogle Scholar
  16. 16.
    C. Barcelo, S. Liberati, M. Visser, Living Rev. Relativ. 8, 12 (2005). arXiv:gr-qc/0505065 ADSGoogle Scholar
  17. 17.
    P. Horava, Phys. Rev. D 79, 084008 (2009) CrossRefMathSciNetADSGoogle Scholar
  18. 18.
    P. Horava, J. High Energy Phys. 020, 0903 (2009) MathSciNetGoogle Scholar
  19. 19.
    P. Horava, Phys. Rev. Lett. 102, 161301 (2009) CrossRefMathSciNetADSGoogle Scholar
  20. 20.
    P. Horava, Phys. Lett. B 694, 172 (2010). arXiv:0811.2217 [hep-th] CrossRefADSGoogle Scholar
  21. 21.
    V.A. Kostelecký, N. Russell, arXiv:0801.0287 [hep-ph]
  22. 22.
    A.A. Abdo et al. (Fermi GBM/LAT Collaborations), Nature 462, 331 (2009) CrossRefADSGoogle Scholar
  23. 23.
    V. Vasileiou, arXiv:1002.0349 [astro-ph]
  24. 24.
    Z. Xiao, B.-Q. Ma, Phys. Rev. D 80, 116005 (2009) CrossRefADSGoogle Scholar
  25. 25.
    L. Shao, Z. Xiao, B.-Q. Ma, Astropart. Phys. 33, 312 (2010). arXiv:0911.2276 [hep-ph] CrossRefADSGoogle Scholar
  26. 26.
    L. Shao, B.-Q. Ma, Mod. Phys. Lett. A, in press. arXiv:1007.2269 [hep-ph]
  27. 27.
    L. Maccione, S. Liberati, G. Sigl, Phys. Rev. Lett. 105, 021101 (2010). arXiv:1003.5468 [astro-ph] CrossRefADSGoogle Scholar
  28. 28.
    R.C. Myers, M. Pospelov, Phys. Rev. Lett. 90, 211601 (2003) CrossRefMathSciNetADSGoogle Scholar
  29. 29.
    P.A. Bolokhov, M. Pospelov, Phys. Rev. D 77, 025022 (2008) CrossRefADSGoogle Scholar
  30. 30.
    D. Anselmi, Phys. Rev. D 79, 025017 (2009) CrossRefADSGoogle Scholar
  31. 31.
    D. Anselmi, Eur. Phys. J. C 65, 523 (2010) CrossRefADSGoogle Scholar
  32. 32.
    S.G. Nibbelink, M. Pospelov, Phys. Rev. Lett. 94, 081601 (2005) CrossRefMathSciNetADSGoogle Scholar
  33. 33.
    P.A. Bolokhov, S.G. Nibbelink, M. Pospelov, Phys. Rev. D 72, 015013 (2005) CrossRefADSGoogle Scholar
  34. 34.
    V.A. Kostelecký, M. Mewes, Phys. Rev. D 80, 015020 (2009). arXiv:0905.0031 [hep-ph], Table XIV CrossRefADSGoogle Scholar
  35. 35.
    S. Liberati, L. Maccione, Annu. Rev. Nucl. Part. Sci. 59, 245 (2009). arXiv:0906.0681 [astro-ph] CrossRefADSGoogle Scholar
  36. 36.
    S. Herrmann, A. Senger, K. Möhle, M. Nagel, E.V. Kovalchuk, A. Peters, Phys. Rev. D 80, 105011 (2009) CrossRefADSGoogle Scholar
  37. 37.
    M.A. Hohensee, R. Lehnert, D.F. Phillips, R.L. Walsworth, Phys. Rev. Lett. 102, 170402 (2009) CrossRefADSGoogle Scholar
  38. 38.
    M.A. Hohensee, R. Lehnert, D.F. Phillips, R.L. Walsworth, Phys. Rev. D 80, 036010 (2009) CrossRefADSGoogle Scholar
  39. 39.
    B. Altschul, Phys. Rev. D 80, 091901 (2009) CrossRefADSGoogle Scholar
  40. 40.
    J.-P. Bocquet et al., Phys. Rev. Lett. 104, 241601 (2010) CrossRefADSGoogle Scholar
  41. 41.
    V.A. Fock, The Theory of Space, Time, and Gravitation (MacMillan, New York, 1964) Google Scholar
  42. 42.
    V.A. Kostelecký, M. Mewes, Phys. Rev. D 66, 056005 (2002) CrossRefADSGoogle Scholar
  43. 43.
    S.M. Carroll, G.B. Field, R. Jackiw, Phys. Rev. D 41, 1231 (1990) CrossRefADSGoogle Scholar
  44. 44.
    S. Weinberg, The Quantum Theory of Fields (Cambridge University Press, Cambridge, 2002), see Vol. I, Chap. 7, page 314 Google Scholar
  45. 45.
    L. Ryder, Quantum Field Theory (Cambridge University Press, Cambridge, 1996) zbMATHGoogle Scholar
  46. 46.
    D. Mattingly, Living Rev. Relativ. 8, 5 (2005). arXiv:gr-qc/0502097 ADSGoogle Scholar
  47. 47.
    V.A. Kostelecký, Phys. Rev. D 69, 105009 (2004) CrossRefADSGoogle Scholar
  48. 48.
    M.A. Hohensee, P.L. Stanwix, M.E. Tobar, S.R. Parker, D.F. Phillips, R.L. Walsworth, Phys. Rev. D 82, 076001 (2010) CrossRefADSGoogle Scholar
  49. 49.
    I.G. Mitrofanov, Nature 426, 139 (2003) CrossRefADSGoogle Scholar
  50. 50.
    V.A. Kostelecký, M. Mewes, Phys. Rev. Lett. 99, 011601 (2007) CrossRefADSGoogle Scholar
  51. 51.
    P. Cabella, P. Natoli, J. Silk, Phys. Rev. D 76, 123014 (2007) CrossRefADSGoogle Scholar
  52. 52.
    V.A. Kostelecký, M. Mewes, Phys. Rev. Lett. 87, 251304 (2001) CrossRefADSGoogle Scholar
  53. 53.
    L. Brillouin, Wave Propagation and Group Velocity (Academic Press, New York) Google Scholar
  54. 54.
    L.J. Wang, A. Kuzmich, A. Dogariu, Nature 406, 277 (2000) CrossRefADSGoogle Scholar
  55. 55.
    S. Liberati, S. Sonego, M. Visser, Ann. Phys. 298, 167 (2002). arXiv:gr-qc/0107091 zbMATHCrossRefMathSciNetADSGoogle Scholar
  56. 56.
    V.A. Kostelecký, R. Lehnert, Phys. Rev. D 63, 065008 (2001) CrossRefMathSciNetADSGoogle Scholar
  57. 57.
    C. Adam, F.R. Klinkhamer, Nucl. Phys. B 607, 247 (2001) zbMATHCrossRefADSGoogle Scholar
  58. 58.
    C. Adam, F.R. Klinkhamer, Phys. Lett. B 513, 245 (2001) zbMATHCrossRefADSGoogle Scholar
  59. 59.
    D. Anselmi, J. High Energy Phys. 02, 051 (2008) CrossRefMathSciNetADSGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2010

Authors and Affiliations

  1. 1.School of Physics and State Key Laboratory of Nuclear Physics and TechnologyPeking UniversityBeijingChina
  2. 2.Center for High Energy PhysicsPeking UniversityBeijingChina

Personalised recommendations