Advertisement

The European Physical Journal C

, Volume 70, Issue 4, pp 1037–1049 | Cite as

Quark spectral properties above T c from Dyson–Schwinger equations

  • Jens A. Mueller
  • Christian S. FischerEmail author
  • Dominik Nickel
Regular Article - Theoretical Physics

Abstract

We report on an analysis of the quark spectral representation at finite temperatures based on the quark propagator determined from its Dyson–Schwinger equation in Landau gauge. In Euclidean space we achieve nice agreement with recent results from quenched lattice QCD. We find different analytical properties of the quark propagator below and above the deconfinement transition. Using a variety of ansätze for the spectral function we then analyze the possible quasiparticle spectrum, in particular its quark mass and momentum dependence in the high temperature phase. This analysis is completed by an application of the Maximum Entropy Method, in principle allowing for any positive semi-definite spectral function. Our results motivate a more direct determination of the spectral function in the framework of Dyson–Schwinger equations.

Keywords

Quark Mass Spectral Function Chiral Limit Thermal Mass Landau Gauge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Muller, J.L. Nagle, Annu. Rev. Nucl. Part. Sci. 56, 93 (2006). arXiv:nucl-th/0602029 CrossRefADSGoogle Scholar
  2. 2.
    E. Shuryak, Prog. Part. Nucl. Phys. 62, 48 (2009). arXiv:0807.3033 [hep-ph] CrossRefADSGoogle Scholar
  3. 3.
    P. Braun-Munzinger, J. Wambach, Rev. Mod. Phys. 81, 1031 (2009) CrossRefADSGoogle Scholar
  4. 4.
    U.W. Heinz, arXiv:0901.4355 [nucl-th]
  5. 5.
    D. Molnar, S.A. Voloshin, Phys. Rev. Lett. 91, 092301 (2003). arXiv:nucl-th/0302014 CrossRefADSGoogle Scholar
  6. 6.
    R. Schulze, M. Bluhm, B. Kampfer, Eur. Phys. J. ST 155, 177 (2008). arXiv:0709.2262 [hep-ph] Google Scholar
  7. 7.
    M. Bluhm, B. Kampfer, Phys. Rev. D 77, 114016 (2008). arXiv:0801.4147 [hep-ph] CrossRefADSGoogle Scholar
  8. 8.
    W. Cassing, Nucl. Phys. A 791, 365 (2007). arXiv:0704.1410 [nucl-th] CrossRefADSGoogle Scholar
  9. 9.
    W. Cassing, E.L. Bratkovskaya, Phys. Rev. C 78, 034919 (2008). arXiv:0808.0022 [hep-ph] CrossRefADSGoogle Scholar
  10. 10.
    E. Braaten, R.D. Pisarski, T.C. Yuan, Phys. Rev. Lett. 64, 2242 (1990) CrossRefADSGoogle Scholar
  11. 11.
    A. Peshier, M.H. Thoma, Phys. Rev. Lett. 84, 841 (2000). arXiv:hep-ph/9907268 CrossRefADSGoogle Scholar
  12. 12.
    P.B. Arnold, G.D. Moore, L.G. Yaffe, J. High Energy Phys. 0206, 030 (2002). arXiv:hep-ph/0204343 CrossRefMathSciNetADSGoogle Scholar
  13. 13.
    P.B. Arnold, G.D. Moore, L.G. Yaffe, J. High Energy Phys. 0112, 009 (2001). arXiv:hep-ph/0111107 CrossRefADSGoogle Scholar
  14. 14.
    E. Braaten, R.D. Pisarski, Nucl. Phys. B 337, 569 (1990) CrossRefADSGoogle Scholar
  15. 15.
    E. Braaten, R.D. Pisarski, Phys. Rev. Lett. 64, 1338 (1990) CrossRefADSGoogle Scholar
  16. 16.
    G. Baym, J.P. Blaizot, B. Svetitsky, Phys. Rev. D 46, 4043 (1992) CrossRefADSGoogle Scholar
  17. 17.
    J.P. Blaizot, J.Y. Ollitrault, Phys. Rev. D 48, 1390 (1993). arXiv:hep-th/9303070 CrossRefADSGoogle Scholar
  18. 18.
    A. Schaefer, M.H. Thoma, Phys. Lett. B 451, 195 (1999). arXiv:hep-ph/9811364 CrossRefADSGoogle Scholar
  19. 19.
    M. Kitazawa, T. Kunihiro, Y. Nemoto, Phys. Lett. B 633, 269 (2006). arXiv:hep-ph/0510167 CrossRefADSGoogle Scholar
  20. 20.
    M. Kitazawa, T. Kunihiro, Y. Nemoto, Prog. Theor. Phys. 117, 103 (2007). arXiv:hep-ph/0609164 CrossRefADSzbMATHGoogle Scholar
  21. 21.
    M. Harada, Y. Nemoto, S. Yoshimoto, Prog. Theor. Phys. 119, 1 (2008). arXiv:0708.3351 [hep-ph] CrossRefGoogle Scholar
  22. 22.
    M. Harada, S. Yoshimoto, arXiv:0903.5495 [hep-ph]
  23. 23.
    W.H. Press, S.A. Teukolsy, W.T. Vetterling, B.P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, 2nd edn. (Cambridge University Press, Cambridge, 1992) zbMATHGoogle Scholar
  24. 24.
    M. Jarrell, J.E. Gubernatis, Phys. Rep. 269, 133 (1996) CrossRefMathSciNetADSGoogle Scholar
  25. 25.
    M. Asakawa, T. Hatsuda, Y. Nakahara, Prog. Part. Nucl. Phys. 46, 459 (2001). arXiv:hep-lat/0011040 CrossRefADSGoogle Scholar
  26. 26.
    F. Karsch, E. Laermann, P. Petreczky, S. Stickan, I. Wetzorke, Phys. Lett. B 530, 147 (2002). arXiv:hep-lat/0110208 ADSGoogle Scholar
  27. 27.
    S. Datta, F. Karsch, P. Petreczky, I. Wetzorke, Phys. Rev. D 69, 094507 (2004). arXiv:hep-lat/0312037 CrossRefADSGoogle Scholar
  28. 28.
    D. Nickel, Ann. Phys. 322, 1949 (2007). arXiv:hep-ph/0607224 CrossRefMathSciNetADSzbMATHGoogle Scholar
  29. 29.
    F. Karsch, M. Kitazawa, Phys. Lett. B 658, 45 (2007). arXiv:0708.0299 [hep-lat] CrossRefADSGoogle Scholar
  30. 30.
    F. Karsch, M. Kitazawa, Phys. Rev. D 80, 056001 (2009). arXiv:0906.3941 [hep-lat] CrossRefADSGoogle Scholar
  31. 31.
    C.S. Fischer, A. Maas, J.A. Mueller, Eur. Phys. J. C 68, 165 (2010). arXiv:1003.1960 [hep-ph] CrossRefADSGoogle Scholar
  32. 32.
    A. Cucchieri, A. Maas, T. Mendes, Phys. Rev. D 75, 076003 (2007). arXiv:hep-lat/0702022 ADSGoogle Scholar
  33. 33.
    K. Lichtenegger, D. Zwanziger, Phys. Rev. D 78, 034038 (2008). arXiv:0805.3804 [hep-ph] CrossRefADSGoogle Scholar
  34. 34.
    A. Maas, J. Wambach, R. Alkofer, Eur. Phys. J. C 42, 93 (2005). arXiv:hep-ph/0504019 CrossRefADSGoogle Scholar
  35. 35.
    A. Maas, J. Wambach, B. Grüter, R. Alkofer, Eur. Phys. J. C 37(3), 335 (2004). arXiv:hep-ph/0408074 CrossRefADSzbMATHGoogle Scholar
  36. 36.
    A. Kizilersu, D.B. Leinweber, J.I. Skullerud, A.G. Williams, Eur. Phys. J. C 50, 871 (2007). arXiv:hep-lat/0610078 CrossRefADSGoogle Scholar
  37. 37.
    R. Alkofer, C.S. Fischer, F.J. Llanes-Estrada, K. Schwenzer, Ann. Phys. 324, 106 (2009). arXiv:0804.3042 [hep-ph] CrossRefMathSciNetADSzbMATHGoogle Scholar
  38. 38.
    C.S. Fischer, Phys. Rev. Lett. 103, 052003 (2009). arXiv:0904.2700 [hep-ph] CrossRefADSGoogle Scholar
  39. 39.
    C.S. Fischer, J.A. Mueller, Phys. Rev. D 80, 074029 (2009). arXiv:0908.0007 [hep-ph] CrossRefADSGoogle Scholar
  40. 40.
    M. Le Bellac, Thermal Field Theory (Cambridge University Press, Cambridge, 1996) CrossRefGoogle Scholar
  41. 41.
    R. Alkofer, W. Detmold, C.S. Fischer, P. Maris, Phys. Rev. D 70, 014014 (2004). arXiv:hep-ph/0309077 ADSGoogle Scholar
  42. 42.
    R. Alkofer, W. Detmold, C.S. Fischer, P. Maris, Nucl. Phys. Proc. Suppl. 141, 122 (2005). arXiv:hep-ph/0309078 CrossRefADSGoogle Scholar
  43. 43.
    A. Bender, D. Blaschke, Y. Kalinovsky, C.D. Roberts, Phys. Rev. Lett. 77, 3724 (1996). arXiv:nucl-th/9606006 CrossRefADSGoogle Scholar
  44. 44.
    C. Gattringer, Phys. Rev. Lett. 97, 032003 (2006). arXiv:hep-lat/0605018 CrossRefMathSciNetADSGoogle Scholar
  45. 45.
    E. Bilgici, F. Bruckmann, C. Gattringer, C. Hagen, Phys. Rev. D 77, 094007 (2008). arXiv:0801.4051 [hep-lat] ADSGoogle Scholar
  46. 46.
    J. Braun, L.M. Haas, F. Marhauser, J.M. Pawlowski, arXiv:0908.0008 [hep-ph]

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2010

Authors and Affiliations

  • Jens A. Mueller
    • 1
  • Christian S. Fischer
    • 1
    • 2
    • 3
    Email author
  • Dominik Nickel
    • 4
  1. 1.Institut für KernphysikTechnische Universität DarmstadtDarmstadtGermany
  2. 2.Institut für Theoretische PhysikUniversität GiessenGiessenGermany
  3. 3.GSI Helmholtzzentrum für Schwerionenforschung GmbHDarmstadtGermany
  4. 4.Institute for Nuclear TheoryUniversity of WashingtonSeattleUSA

Personalised recommendations