Advertisement

The European Physical Journal C

, Volume 70, Issue 4, pp 1051–1060 | Cite as

A minimal quasiparticle approach for the QGP and its large-N c limits

  • Fabien BuisseretEmail author
  • Gwendolyn Lacroix
Regular Article - Theoretical Physics

Abstract

We propose a quasiparticle approach allowing to compute the equation of state of a generic gauge theory with gauge group SU(N c ) and quarks in an arbitrary representation. Our formalism relies on the thermal quasiparticle masses (quarks and gluons) computed from perturbative techniques, in which the standard two-loop running coupling constant is used. Our model is minimal in the sense that we do not allow any extra ansatz concerning the temperature-dependence of the running coupling. We first show that it is able to reproduce the most recent equations of state computed on the lattice for temperatures typically higher than 2T c . Well above T c indeed, an ideal-gas framework with thermal masses is expected to be relevant. Then we study the accuracy of various inequivalent large-N c limits concerning the description of the QCD results, as well as the equivalence between the QCD AS limit and the \(\mathcal{N}=1\) SUSY Yang–Mills theory.

Keywords

Gauge Group Heavy Quark Lattice Data Light Quark Gluon Plasma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.C. Collins, M.J. Perry, Phys. Rev. Lett. 34, 1353 (1975) CrossRefADSGoogle Scholar
  2. 2.
    E.V. Shuryak, Phys. Rep. 61, 71 (1980) CrossRefMathSciNetADSGoogle Scholar
  3. 3.
    D.G. d’Enterria, J. Phys. G 34, S53 (2007). nucl-ex/0611012 CrossRefADSGoogle Scholar
  4. 4.
    L. Kluberg, H. Satz, arXiv:0901.3831
  5. 5.
    D.E. Miller, Phys. Rep. 443, 55 (2007). hep-ph/0608234 CrossRefADSGoogle Scholar
  6. 6.
    C. DeTar, U.M. Heller, Eur. Phys. J. A 41, 405 (2009). arXiv:0905.2949 CrossRefADSGoogle Scholar
  7. 7.
    M. Panero, Phys. Rev. Lett. 103, 232001 (2009). arXiv:0907.3719 CrossRefADSGoogle Scholar
  8. 8.
    C. DeTar et al., Phys. Rev. D 81, 114504 (2010). arXiv:1003.5682 CrossRefADSGoogle Scholar
  9. 9.
    N. Itoh, Prog. Theor. Phys. 44, 291 (1970) CrossRefADSGoogle Scholar
  10. 10.
    V. Goloviznin, H. Satz, Z. Phys. C 57, 671 (1993) CrossRefADSGoogle Scholar
  11. 11.
    M.I. Gorenstein, S.N. Yang, Phys. Rev. D 52, 5206 (1995) CrossRefADSGoogle Scholar
  12. 12.
    A. Peshier, B. Kampfer, O.P. Pavlenko, G. Soff, Phys. Lett. B 337, 235 (1994) CrossRefADSGoogle Scholar
  13. 13.
    P. Levai, U.W. Heinz, Phys. Rev. C 57, 1879 (1997). hep-ph/9710463 CrossRefADSGoogle Scholar
  14. 14.
    J.O. Andersen, E. Braaten, M. Strickland, Phys. Rev. Lett. 83, 2139 (1999). hep-ph/9902327 CrossRefADSGoogle Scholar
  15. 15.
    J.P. Blaizot, E. Iancu, A. Rebhan, hep-ph/0303185
  16. 16.
    A. Rebhan, P. Romatschke, Phys. Rev. D 68, 025022 (2003). hep-ph/0304294 CrossRefADSGoogle Scholar
  17. 17.
    M. Teper, Acta Phys. Pol. B 40, 3249 (2009). arXiv:0912.3339 Google Scholar
  18. 18.
    E. Shuryak, J. Phys. G 35, 104044 (2008). arXiv:0804.1373 CrossRefADSGoogle Scholar
  19. 19.
    W.E. Caswell, Phys. Rev. Lett. 33, 244 (1974) CrossRefADSGoogle Scholar
  20. 20.
    F.J. Ynduráin, The Theory of Quark and Gluons Interactions (Springer, Berlin, 1999) Google Scholar
  21. 21.
    B. Lucini, M. Teper, Phys. Rev. D 64, 105019 (2001). hep-lat/0107007 CrossRefADSGoogle Scholar
  22. 22.
    G. Endrodi, Z. Fodor, S.D. Katz, K.K. Szabo, Proc. Sci. LAT2007, 228 (2007). arXiv:0710.4197 Google Scholar
  23. 23.
    J. Engels, J. Fingberg, K. Redlich, H. Satz, M. Weber, Z. Phys. C 42, 341 (1989) CrossRefGoogle Scholar
  24. 24.
    H.A. Weldon, Phys. Rev. D 26, 1394 (1982) CrossRefADSGoogle Scholar
  25. 25.
    F. Flechsig, A.K. Rebhan, Nucl. Phys. B 464, 279 (1996). hep-ph/9509313 CrossRefADSGoogle Scholar
  26. 26.
    J.P. Blaizot, E. Iancu, A. Rebhan, Phys. Lett. B 470, 181 (1999). hep-ph/9910309 CrossRefADSGoogle Scholar
  27. 27.
    J.P. Blaizot, E. Iancu, A. Rebhan, Phys. Rev. D 63, 065003 (2001). hep-ph/0005003 CrossRefADSGoogle Scholar
  28. 28.
    J.D. Walecka, Fundamentals of Statistical Mechanics (Imperial College Press/World Scientific, Singapore, 2000) zbMATHGoogle Scholar
  29. 29.
    G. Boyd et al., Phys. Rev. Lett. 75, 4169 (1995). hep-lat/9506025 CrossRefADSGoogle Scholar
  30. 30.
    G. Boyd et al., Nucl. Phys. B 469, 419 (1996). hep-lat/9602007 CrossRefADSGoogle Scholar
  31. 31.
    S. Gupta, K. Huebner, O. Kaczmarek, Phys. Rev. D 77, 034503 (2008). arXiv:0711.2251 CrossRefADSGoogle Scholar
  32. 32.
    O. Kaczmarek, F. Zantow, Phys. Rev. D 71, 114510 (2005). hep-lat/0503017 CrossRefADSGoogle Scholar
  33. 33.
    S. Mattiello, W. Cassing, J. Phys. G 36, 125003 (2009). arXiv:0905.0364 CrossRefADSGoogle Scholar
  34. 34.
    F.G. Gardim, F.M. Steffens, Nucl. Phys. A 825, 222 (2009). arXiv:0905.0667 CrossRefADSGoogle Scholar
  35. 35.
    S. Datta, S. Gupta, arXiv:1006.0938
  36. 36.
    J.O. Andersen, M. Strickland, N. Su, Phys. Rev. Lett. 104, 122003 (2010). arXiv:0911.0676 CrossRefADSGoogle Scholar
  37. 37.
    J.O. Andersen, N. Su, M. Strickland, J. High Energy Phys. 1008, 113 (2010). arXiv:1005.1603 CrossRefADSGoogle Scholar
  38. 38.
    P. Castorina, M. Mannarelli, Phys. Rev. C 75, 054901 (2007). hep-ph/0701206 CrossRefADSGoogle Scholar
  39. 39.
    V. Gogokhia, M. Vasùth, J. Phys. G 37, 075015 (2010). arXiv:0902.3901 CrossRefADSGoogle Scholar
  40. 40.
    A. Hietanen, K. Kajantie, M. Laine, K. Rummukainen, Y. Schroder, Phys. Rev. D 79, 045018 (2009). arXiv:0811.4664 ADSGoogle Scholar
  41. 41.
    K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010) CrossRefADSGoogle Scholar
  42. 42.
    M. Cheng et al., Phys. Rev. D 74, 054507 (2006). hep-lat/0608013 CrossRefADSGoogle Scholar
  43. 43.
    F. Karsch, Proc. Sci. LAT2007, 015 (2007). arXiv:0711.0661 Google Scholar
  44. 44.
    Y. Aoki et al., J. High Energy Phys. 0906, 088 (2009). arXiv:0903.4155 CrossRefADSGoogle Scholar
  45. 45.
    M. Cheng et al., Phys. Rev. D 77, 014511 (2008). arXiv:0710.0354 CrossRefADSGoogle Scholar
  46. 46.
    A. Bazavov et al., Phys. Rev. D 80, 014504 (2009). arXiv:0903.4379 CrossRefADSGoogle Scholar
  47. 47.
    L. Levkova, Proc. Sci. LAT2009, 170 (2009). arXiv:0910.3006 Google Scholar
  48. 48.
    C. Bernard et al., Phys. Rev. D 77, 014503 (2008). arXiv:0710.1330 CrossRefADSGoogle Scholar
  49. 49.
    S. Basak et al., Proc. Sci. LATTICE2008, 171 (2008). arXiv:0910.0276 Google Scholar
  50. 50.
    F. Csikor et al., J. High Energy Phys. 0405, 046 (2004). hep-lat/0401016 CrossRefADSGoogle Scholar
  51. 51.
    G. ’t Hooft, Nucl. Phys. B 72, 461 (1974) CrossRefMathSciNetADSGoogle Scholar
  52. 52.
    E. Witten, Nucl. Phys. B 160, 57 (1979) CrossRefMathSciNetADSGoogle Scholar
  53. 53.
    G. Veneziano, Nucl. Phys. B 117, 519 (1976) CrossRefADSGoogle Scholar
  54. 54.
    A. Armoni, M. Shifman, G. Veneziano, Nucl. Phys. B 667, 170 (2003). hep-th/0302163 zbMATHCrossRefMathSciNetADSGoogle Scholar
  55. 55.
    A. Armoni, M. Shifman, G. Veneziano, Phys. Rev. Lett. 91, 191601 (2003). hep-th/0307097 CrossRefADSGoogle Scholar
  56. 56.
    E. Corrigan, P. Ramond, Phys. Lett. B 87, 73 (1979) CrossRefADSGoogle Scholar
  57. 57.
    D.D. Dietrich, F. Sannino, Phys. Rev. D 75, 085018 (2007). hep-ph/0611341 CrossRefMathSciNetADSGoogle Scholar
  58. 58.
    A. Salam, J. Strathdee, Phys. Lett. B 51, 353 (1974) CrossRefMathSciNetADSGoogle Scholar
  59. 59.
    H. Satz, J. Phys. G 32, R25 (2006). hep-ph/0512217 CrossRefADSGoogle Scholar
  60. 60.
    E.V. Shuryak, I. Zahed, Phys. Rev. D 70, 54507 (2004). hep-ph/0403127 CrossRefADSGoogle Scholar
  61. 61.
    M. Laine, O. Philipsen, P. Romatschke, M. Tassler, J. High Energy Phys. 0703, 054 (2007). hep-ph/0611300 CrossRefADSGoogle Scholar
  62. 62.
    N. Brambilla, J. Ghiglieri, A. Vairo, P. Petreczky, Phys. Rev. D 78, 014017 (2008). arXiv:0804.0993 CrossRefADSGoogle Scholar
  63. 63.
    O. Kaczmarek, F. Zantow, Phys. Rev. D 71, 114510 (2005). hep-lat/0503017 CrossRefADSGoogle Scholar
  64. 64.
    M.G. Endres, Phys. Rev. D 79, 094503 (2009). arXiv:0902.4267 CrossRefADSGoogle Scholar
  65. 65.
    K. Demmouche et al., arXiv:1003.2073

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2010

Authors and Affiliations

  1. 1.Service de Physique Nucléaire et SubnucléaireUniversité de Mons—UMONSMonsBelgium

Personalised recommendations