Advertisement

The European Physical Journal C

, Volume 70, Issue 4, pp 1071–1090 | Cite as

Constraints on two-lepton two-quark operators

  • Michael Carpentier
  • Sacha DavidsonEmail author
Regular Article - Theoretical Physics

Abstract

Physics from beyond the Standard Model, such as leptoquarks, can induce four fermion operators involving a quark, an anti-quark, a lepton and an anti-lepton. We update the (flavour-dependent) constraints on the coefficients of such interactions, arising from collider searches for contact interactions, meson decays and other rare processes. We then make naive estimates for the magnitude of the coefficients, as could arise in texture models or from inverse hierarchies in the kinetic term coefficients. These “expectations” suggest that rare kaon decays could be a good place to look for such operators.

Keywords

Contact Interaction Charged Lepton Index Combination Fermion Operator Meson Decay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.J. Buras, P. Gambino, M. Gorbahn, S. Jager, L. Silvestrini, Universal unitarity triangle and physics beyond the Standard Model. Phys. Lett. B 500, 161 (2001). arXiv:hep-ph/0007085 CrossRefADSGoogle Scholar
  2. 2.
    R.S. Chivukula, H. Georgi, Phys. Lett. B 188, 99 (1987) CrossRefADSGoogle Scholar
  3. 3.
    G. D’Ambrosio, G.F. Giudice, G. Isidori, A. Strumia, Minimal flavour violation: An effective field theory approach. Nucl. Phys. B 645, 155 (2002). arXiv:hep-ph/0207036 CrossRefADSGoogle Scholar
  4. 4.
    W. Buchmüller, D. Wyler, Effective Lagrangian analysis of new interactions and flavor conservation. Nucl. Phys. B 268, 621 (1986) CrossRefADSGoogle Scholar
  5. 5.
    K.S. McFarland et al. (CCFR Collaboration and The E744 Collaboration and The E770 Collaboration), A precision measurement of electroweak parameters in neutrino nucleon scattering. Eur. Phys. J. C 1, 509 (1998). arXiv:hep-ex/9701010 CrossRefADSGoogle Scholar
  6. 6.
    S. Schael et al. (ALEPH Collaboration), Fermion pair production in e + e collisions at 189–209-GeV and constraints on physics beyond the standard model. Eur. Phys. J. C 49, 411 (2007). arXiv:hep-ex/0609051 CrossRefADSGoogle Scholar
  7. 7.
    F. Abe et al. (CDF Collaboration), Limits on quark-lepton compositeness scales from dileptons produced in 1.8 TeV \(p\bar{p}\) collisions. Phys. Rev. Lett. 79, 2198 (1997) CrossRefADSGoogle Scholar
  8. 8.
    http://www-d0.fnal.gov/Run2Physics/WWW/results/np.htm. D0 note 4922-CONF, D0 note 4552-CONF
  9. 9.
    R. Ciesielski (H1 and ZEUS Collaborations), Search for leptoquarks and contact interactions at HERA. PoS E PS-HEP2009, 269 (2009) Google Scholar
  10. 10.
    C. Amsler et al., The review of particle physics, Particle data book. Phys. Lett. B 667 (2008), and 2009 partial update for the 2010 edition Google Scholar
  11. 11.
    C. Dohmen et al. (SINDRUM II Collaboration), Test of lepton flavor conservation in Mu → E conversion on titanium. Phys. Lett. B 317, 631 (1993) CrossRefADSGoogle Scholar
  12. 12.
    G. Bhattacharyya, J.R. Ellis, K. Sridhar, Bounds on the masses and couplings of leptoquarks from leptonic partial widths of the Z. Phys. Lett. B 336, 100 (1994). arXiv:hep-ph/9406354 [Erratum-ibid. B 338 (1994) 522] CrossRefADSGoogle Scholar
  13. 13.
    J.K. Mizukoshi, O.J.P. Eboli, M.C. Gonzalez-Garcia, Bounds on scalar leptoquarks from Z physics. Nucl. Phys. B 443, 20 (1995). arXiv:hep-ph/9411392 CrossRefADSGoogle Scholar
  14. 14.
    R. Benbrik, C.K. Chua, Lepton flavor violating llγ and \(Z \to l \bar{l}'\) decays induced by scalar leptoquarks. Phys. Rev. D 78, 075025 (2008). arXiv:0807.4240 [hep-ph] CrossRefADSGoogle Scholar
  15. 15.
    V.D. Barger, K.m. Cheung, K. Hagiwara, D. Zeppenfeld, Global study of electron quark contact interactions. Phys. Rev. D 57, 391 (1998). arXiv:hep-ph/9707412 CrossRefADSGoogle Scholar
  16. 16.
    M. Raidal et al., Flavour physics of leptons and dipole moments. Eur. Phys. J. C 57, 13 (2008). arXiv:0801.1826 [hep-ph] CrossRefADSGoogle Scholar
  17. 17.
    A.E. Nelson, Contact terms, compositeness, and atomic parity violation. Phys. Rev. Lett. 78, 4159 (1997). arXiv:hep-ph/9703379 CrossRefADSGoogle Scholar
  18. 18.
    E. Eichten, K.D. Lane, M.E. Peskin, New tests for quark and lepton substructure. Phys. Rev. Lett. 50, 811 (1983) CrossRefADSGoogle Scholar
  19. 19.
    M.K. Gaillard, B.W. Lee, Rare decay modes of the K-Mesons in gauge theories. Phys. Rev. D 10, 897 (1974) CrossRefADSGoogle Scholar
  20. 20.
    A. Pich, J.P. Silva, Constraining new interactions with leptonic τ decays. Phys. Rev. D 52, 4006 (1995). arXiv:hep-ph/9505327 CrossRefADSGoogle Scholar
  21. 21.
    A. Ibarra, E. Masso, J. Redondo, Systematic approach to gauge-invariant relations between lepton flavor violating processes. Nucl. Phys. B 715, 523 (2005). arXiv:hep-ph/0410386 CrossRefADSzbMATHGoogle Scholar
  22. 22.
    R.J. Cashmore et al., Exotic phenomena in high-energy E P collisions. Phys. Rep. 122, 275 (1985) CrossRefADSGoogle Scholar
  23. 23.
    W. Buchmuller, D. Wyler, Constraints on the universal contact interaction. Phys. Lett. B 407, 147 (1997). arXiv:hep-ph/9704317 CrossRefADSGoogle Scholar
  24. 24.
    N. Di Bartolomeo, M. Fabbrichesi, Four-fermion effective interactions and recent data at HERA. Phys. Lett. B 406, 237 (1997). arXiv:hep-ph/9703375 CrossRefADSGoogle Scholar
  25. 25.
    K.m. Cheung, Constraints on electron quark contact interactions and implications to models of leptoquarks and extra Z bosons. Phys. Lett. B 517, 167 (2001). arXiv:hep-ph/0106251 CrossRefADSGoogle Scholar
  26. 26.
    A.F. Zarnecki, Global analysis of eeqq contact interactions and future prospects for high-energy physics. Eur. Phys. J. C 11, 539 (1999). arXiv:hep-ph/9904334 ADSGoogle Scholar
  27. 27.
    W. Buchmüller, R. Rückl, D. Wyler, Leptoquarks in lepton quark collisions. Phys. Lett. B 191, 442 (1987) [Erratum-ibid. B 448 (1999) 320] CrossRefADSGoogle Scholar
  28. 28.
    W. Buchmuller, D. Wyler, Constraints on SU(5) type leptoquarks. Phys. Lett. B 177, 377 (1986) CrossRefADSGoogle Scholar
  29. 29.
    S. Davidson, D.C. Bailey, B.A. Campbell, Model independent constraints on leptoquarks from rare processes. Z. Phys. C 61, 613 (1994). arXiv:hep-ph/9309310 CrossRefADSGoogle Scholar
  30. 30.
    M. Herz, Bounds on leptoquark and supersymmetric, R-parity violating interactions from meson decays (in German). arXiv:hep-ph/0301079
  31. 31.
    M. Leurer, Bounds on vector leptoquarks. Phys. Rev. D 50, 536 (1994). arXiv:hep-ph/9312341 CrossRefADSGoogle Scholar
  32. 32.
    M. Leurer, A comprehensive study of leptoquark bounds. Phys. Rev. D 49, 333 (1994). arXiv:hep-ph/9309266 CrossRefADSGoogle Scholar
  33. 33.
    J. Blumlein, On the expectations for leptoquarks in the mass range of O (200-GeV). Z. Phys. C 74, 605 (1997). arXiv:hep-ph/9703287 CrossRefGoogle Scholar
  34. 34.
    R.N. Cahn, H. Harari, Bounds on the masses of neutral generation changing gauge bosons. Nucl. Phys. B 176, 135 (1980) CrossRefADSGoogle Scholar
  35. 35.
    E. Salvioni, A. Strumia, G. Villadoro, F. Zwirner, Non-universal minimal Z′ models: present bounds and early LHC reach. JHEP 1003, 010 (2010). arXiv:0911.1450 CrossRefADSGoogle Scholar
  36. 36.
    X.G. He, G. Valencia, D\(\bar{D}\) mixing constraints on FCNC with a non-universal Z′. Phys. Lett. B 651, 135 (2007). arXiv:hep-ph/0703270 CrossRefADSGoogle Scholar
  37. 37.
    T.G. Rizzo, Z′ phenomenology and the LHC. arXiv:hep-ph/0610104
  38. 38.
    T.P. Cheng, M. Sher, Mass matrix ansatz and flavor nonconservation in models with multiple Higgs doublets. Phys. Rev. D 35, 3484 (1987) CrossRefADSGoogle Scholar
  39. 39.
    H.K. Dreiner, M. Kramer, B. O’Leary, Bounds on R-parity violation from leptonic and semi-leptonic meson decays. Phys. Rev. D 75, 114016 (2007). arXiv:hep-ph/0612278 CrossRefADSGoogle Scholar
  40. 40.
    H.K. Dreiner, G. Polesello, M. Thormeier, Bounds on broken R-parity from leptonic meson decays. Phys. Rev. D 65, 115006 (2002). arXiv:hep-ph/0112228 CrossRefADSGoogle Scholar
  41. 41.
    A. Matsuzaki, General analysis of B meson decay into two fermions. Prog. Theor. Phys. 123, 499 (2010). arXiv:0904.4375 [hep-ph] CrossRefADSzbMATHGoogle Scholar
  42. 42.
    B.A. Campbell, A. Ismail, Leptonic pion decay and physics beyond the electroweak standard model. arXiv:0810.4918 [hep-ph]
  43. 43.
    A.D. Smirnov, Mod. Phys. Lett. A 22, 2353 (2007). arXiv:0705.0308 [hep-ph] CrossRefADSGoogle Scholar
  44. 44.
    J.P. Saha, B. Misra, A. Kundu, Constraining scalar leptoquarks from the K and B sectors. arXiv:1003.1384
  45. 45.
    C.S. Kim, J. Lee, W. Namgung, CP violation in the semileptonic B(l4) (BDπlν) decays: Multi-Higgs doublet model and scalar-leptoquark models. Phys. Rev. D 59, 114006 (1999). arXiv:hep-ph/9811396 CrossRefADSGoogle Scholar
  46. 46.
    A.K. Alok, A. Dighe, D. Ghosh, D. London, J. Matias, M. Nagashima, A. Szynkman, New-physics contributions to the forward-backward asymmetry in BK μ +. JHEP 1002, 053 (2010). arXiv:0912.1382 CrossRefADSGoogle Scholar
  47. 47.
    C. Bobeth, G. Hiller, G. Piranishvili, Angular distributions of BKll decays. JHEP 0712, 040 (2007). arXiv:0709.4174 [hep-ph] CrossRefADSGoogle Scholar
  48. 48.
    F. Mescia, C. Smith, S. Trine, K(L)→π 0 e + e and K(L)→π 0 μ + μ : A binary star on the stage of flavor physics. JHEP 0608, 088 (2006). arXiv:hep-ph/0606081 CrossRefADSGoogle Scholar
  49. 49.
    A.V. Artamonov et al. (E949 Collaboration), New measurement of the \(K^{+} \to \pi^{+} \nu \bar{\nu}\) branching ratio. Phys. Rev. Lett. 101, 191802 (2008). arXiv:0808.2459 [hep-ex] CrossRefADSGoogle Scholar
  50. 50.
    B.A. Dobrescu, A.S. Kronfeld, Accumulating evidence for nonstandard leptonic decays of D s mesons. Phys. Rev. Lett. 100, 241802 (2008). arXiv:0803.0512 [hep-ph] CrossRefADSGoogle Scholar
  51. 51.
    R. Benbrik, C.H. Chen, Leptoquark on P +ν, FCNC and LFV. Phys. Lett. B 672, 172 (2009). arXiv:0807.2373 [hep-ph] CrossRefADSGoogle Scholar
  52. 52.
    A. Bazavov et al. (Fermilab Lattice and MILC Collaborations), The D s and D + leptonic decay constants from lattice QCD. PoS LAT2009, 249 (2009). arXiv:0912.5221 Google Scholar
  53. 53.
    S. Fajfer, N. Kosnik, Leptoquarks in FCNC charm decays. Phys. Rev. D 79, 017502 (2009). arXiv:0810.4858 [hep-ph] CrossRefADSGoogle Scholar
  54. 54.
    I. Dorsner, S. Fajfer, J.F. Kamenik, N. Kosnik, Can scalar leptoquarks explain the \(f_{D_{s}}\) puzzle? Phys. Lett. B 682, 67 (2009). arXiv:0906.5585 [hep-ph] CrossRefADSGoogle Scholar
  55. 55.
    E. Golowich, J. Hewett, S. Pakvasa, A.A. Petrov, Implications of D 0\(\bar{D}^{0}\) mixing for New Physics. Phys. Rev. D 76, 095009 (2007). arXiv:0705.3650 [hep-ph] CrossRefADSGoogle Scholar
  56. 56.
    C. Bernard et al., B and D meson decay constants. PoS LATTICE2008, 278 (2008). arXiv:0904.1895 [hep-lat] Google Scholar
  57. 57.
    V. Cirigliano, J. Jenkins, M. Gonzalez-Alonso, Semileptonic decays of light quarks beyond the Standard Model. Nucl. Phys. B 830, 95 (2010). arXiv:0908.1754 [hep-ph] CrossRefADSGoogle Scholar
  58. 58.
    G. Czapek et al., Branching ratio for the rare pion decay into positron and neutrino. Phys. Rev. Lett. 70, 17 (1993) CrossRefADSGoogle Scholar
  59. 59.
    D.I. Britton et al., Measurement of the π +e + neutrino branching ratio. Phys. Rev. D 49, 28 (1994) CrossRefADSGoogle Scholar
  60. 60.
    M. Finkemeier, Radiative corrections to pi(l2) and K(l2) decays. Phys. Lett. B 387, 391 (1996). arXiv:hep-ph/9505434 CrossRefADSGoogle Scholar
  61. 61.
    W.J. Marciano, A. Sirlin, Radiative corrections to pi(lepton 2) decays. Phys. Rev. Lett. 71, 3629 (1993) CrossRefADSGoogle Scholar
  62. 62.
    O.P. Yushchenko et al., High statistic measurement of the K π 0 e ν decay form-factors. Phys. Lett. B 589, 111 (2004). arXiv:hep-ex/0404030 CrossRefADSGoogle Scholar
  63. 63.
    O.P. Yushchenko et al., High statistic study of the K π 0 μ ν decay. Phys. Lett. B 581, 31 (2004). arXiv:hep-ex/0312004 CrossRefADSGoogle Scholar
  64. 64.
    E. Gamiz, M. Jamin, A. Pich, J. Prades, F. Schwab, Theoretical progress on the V us determination from tau decays. PoS KAON, 008 (2008). arXiv:0709.0282 [hep-ph] Google Scholar
  65. 65.
    A. Pich, Theoretical overview on tau physics. Int. J. Mod. Phys. A 21, 5652 (2006). arXiv:hep-ph/0609138 CrossRefADSGoogle Scholar
  66. 66.
    S. Kanemura, T. Ota, K. Tsumura, Phys. Rev. D 73, 016006 (2006). arXiv:hep-ph/0505191 CrossRefADSGoogle Scholar
  67. 67.
    R. Benbrik, C.K. Chua, Lepton flavor violating llγ and \(Z \to l \bar{l}'\) decays induced by scalar leptoquarks. Phys. Rev. D 78, 075025 (2008). arXiv:0807.4240 [hep-ph] CrossRefADSGoogle Scholar
  68. 68.
    E. Gabrielli, Model independent constraints on leptoquarks from MU and TAU lepton rare processes. Phys. Rev. D 62, 055009 (2000). arXiv:hep-ph/9911539 CrossRefADSGoogle Scholar
  69. 69.
    M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory (Addison-Wesley, Reading, 1995), 842p Google Scholar
  70. 70.
    Z. Han, W. Skiba, Effective theory analysis of precision electroweak data. Phys. Rev. D 71, 075009 (2005). arXiv:hep-ph/0412166 CrossRefADSGoogle Scholar
  71. 71.
    C.S. Wood, S.C. Bennett, D. Cho, B.P. Masterson, J.L. Roberts, C.E. Tanner, C.E. Wieman, Measurement of parity nonconservation and an anapole moment in cesium. Science 275, 1759 (1997) CrossRefGoogle Scholar
  72. 72.
    J. Guena, M. Lintz, M.A. Bouchiat, Atomic parity violation: Principles, recent results, present motivations. Mod. Phys. Lett. A 20, 375 (2005). arXiv:physics/0503143 CrossRefADSGoogle Scholar
  73. 73.
    R.D. Young, R.D. Carlini, A.W. Thomas, J. Roche, Testing the Standard Model by precision measurement of the weak charges of quarks. Phys. Rev. Lett. 99, 122003 (2007). arXiv:0704.2618 [hep-ph] CrossRefADSGoogle Scholar
  74. 74.
    O.U. Shanker, Z dependence of coherent Mu E conversion rate in anomalous neutrinoless muon capture. Phys. Rev. D 20, 1608 (1979) CrossRefADSGoogle Scholar
  75. 75.
    K. Huitu, J. Maalampi, M. Raidal, A. Santamaria, New constraints on R-parity violation from mu e conversion in nuclei. Phys. Lett. B 430, 355 (1998). arXiv:hep-ph/9712249 CrossRefADSGoogle Scholar
  76. 76.
    K.m. Cheung, Muon anomalous magnetic moment and leptoquark solutions. Phys. Rev. D 64, 033001 (2001). arXiv:hep-ph/0102238 CrossRefADSGoogle Scholar
  77. 77.
    A. Czarnecki, W.J. Marciano, The muon anomalous magnetic moment: A harbinger for ‘new physics’. Phys. Rev. D 64, 013014 (2001). arXiv:hep-ph/0102122 CrossRefADSGoogle Scholar
  78. 78.
    G. Couture, H. Konig, Bounds on second generation scalar leptoquarks from the anomalous magnetic moment of the muon. Phys. Rev. D 53, 555 (1996). arXiv:hep-ph/9507263 CrossRefADSGoogle Scholar
  79. 79.
    M.A. Doncheski, R.W. Robinett, Leptoquark production in ultrahigh-energy neutrino interactions revisited. Phys. Rev. D 56, 7412 (1997). arXiv:hep-ph/9707328 CrossRefADSGoogle Scholar
  80. 80.
    L.A. Anchordoqui, C.A. Garcia Canal, H. Goldberg, D.G. Dumm, F. Halzen, Probing leptoquark production at IceCube. Phys. Rev. D 74, 125021 (2006). arXiv:hep-ph/0609214 CrossRefADSGoogle Scholar
  81. 81.
    I. Romero, O.A. Sampayo, Leptoquarks signals in KM3 neutrino telescopes. JHEP 0905, 111 (2009). arXiv:0906.5245 [hep-ph] CrossRefADSGoogle Scholar
  82. 82.
    Y. Grossman, Nonstandard neutrino interactions and neutrino oscillation experiments. Phys. Lett. B 359, 141 (1995). arXiv:hep-ph/9507344 CrossRefADSGoogle Scholar
  83. 83.
    M. Honda, Y. Kao, N. Okamura, A. Pronin, T. Takeuchi, Constraints on New Physics from long baseline neutrino oscillation experiments. arXiv:0707.4545 [hep-ph]
  84. 84.
    E. Keith, E. Ma, Oblique S and T parameters and leptoquark models of the HERA events. Phys. Rev. Lett. 79, 4318 (1997). arXiv:hep-ph/9707214 CrossRefADSGoogle Scholar
  85. 85.
    P.H. Frampton, M. Harada, Constraints from precision electroweak data on leptoquarks and bileptons. Phys. Rev. D 58, 095013 (1998). arXiv:hep-ph/9711448 CrossRefADSGoogle Scholar
  86. 86.
    A.D. Smirnov, Bounds on scalar leptoquark and scalar gluon masses from S, T, U in the minimal four color symmetry model. Phys. Lett. B 531, 237 (2002). arXiv:hep-ph/0202229 CrossRefADSGoogle Scholar
  87. 87.
    C. Biggio, M. Blennow, E. Fernandez-Martinez, General bounds on non-standard neutrino interactions. JHEP 0908, 090 (2009). arXiv:0907.0097 [hep-ph] CrossRefADSGoogle Scholar
  88. 88.
    V. Cirigliano, B. Grinstein, G. Isidori, M.B. Wise, Minimal flavor violation in the lepton sector. Nucl. Phys. B 728, 121 (2005). arXiv:hep-ph/0507001 CrossRefADSGoogle Scholar
  89. 89.
    M.B. Gavela, T. Hambye, D. Hernandez, P. Hernandez, Minimal flavour seesaw models. JHEP 0909, 038 (2009). arXiv:0906.1461 [hep-ph] CrossRefADSGoogle Scholar
  90. 90.
    S. Davidson, F. Palorini, Various definitions of minimal flavour violation for leptons. Phys. Lett. B 642, 72 (2006). arXiv:hep-ph/0607329 CrossRefADSGoogle Scholar
  91. 91.
    T. Feldmann, T. Mannel, Minimal flavour violation and beyond. JHEP 0702, 067 (2007). arXiv:hep-ph/0611095 CrossRefADSGoogle Scholar
  92. 92.
    S. Davidson, S. Descotes-Genon, Minimal flavour violation for leptoquarks. JHEP (2010, accepted). arXiv:1009.1998 [hep-ph]
  93. 93.
    N. Arkani-Hamed, M. Schmaltz, Phys. Rev. D 61, 033005 (2000). arXiv:hep-ph/9903417 CrossRefADSGoogle Scholar
  94. 94.
    Y. Grossman, M. Neubert, Phys. Lett. B 474, 361 (2000). arXiv:hep-ph/9912408 CrossRefMathSciNetADSzbMATHGoogle Scholar
  95. 95.
    T. Gherghetta, A. Pomarol, Nucl. Phys. B 586, 141 (2000). arXiv:hep-ph/0003129 CrossRefMathSciNetADSzbMATHGoogle Scholar
  96. 96.
    S. Davidson, G. Isidori, S. Uhlig, Solving the flavour problem with hierarchical fermion wave functions. Phys. Lett. B 663, 73 (2008). arXiv:0711.3376 [hep-ph] CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2010

Authors and Affiliations

  1. 1.IPNL, Université Lyon 1, Université de LyonCNRS/IN2P3Villeurbanne cedexFrance

Personalised recommendations