Advertisement

The European Physical Journal C

, Volume 70, Issue 1–2, pp 317–328 | Cite as

Glassy phase transition and stability in black holes

  • Rabin Banerjee
  • Sujoy Kumar Modak
  • Saurav SamantaEmail author
Regular Article - Theoretical Physics

Abstract

Black hole thermodynamics, confined to the semi-classical regime, cannot address the thermodynamic stability of a black hole in flat space. Here we show that inclusion of a correction beyond the semi-classical approximation makes a black hole thermodynamically stable. This stability is reached through a phase transition. By using Ehrenfest’s scheme we further prove that this is a glassy phase transition with a Prigogine–Defay ratio close to 3. This value is well within the desired bound (2 to 5) for a glassy phase transition. Thus our analysis indicates a very close connection between the phase transition phenomena of a black hole and glass forming systems. Finally, we discuss the robustness of our results by considering different normalisations for the correction term.

Keywords

Phase Transition Black Hole High Energy Phys Order Phase Transition Black Hole Entropy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.W. Hawking, Black holes and thermodynamics. Phys. Rev. D 13, 191 (1976) CrossRefMathSciNetADSGoogle Scholar
  2. 2.
    P.C.W. Davies, Thermodynamics of black holes. Rep. Prog. Phys. 41, 1313 (1978) CrossRefADSGoogle Scholar
  3. 3.
    R. Banerjee, S.K. Modak, Exact differential and corrected area law for stationary black holes in tunneling method. J. High Energy Phys. 05, 063 (2009). arXiv:0903.3321 CrossRefMathSciNetADSGoogle Scholar
  4. 4.
    J.E. Lidsey, S. Nojiri, S.D. Odintsov, S. Ogushi, The AdS/CFT correspondence and logarithmic corrections to braneworld cosmology and the Cardy-Verlinde formula. Phys. Lett. B 544, 337 (2002). arXiv:hep-th/0207009 zbMATHCrossRefMathSciNetADSGoogle Scholar
  5. 5.
    J. Jackle, Models of the glass transition. Rep. Prog. Phys. 49, 171 (1986) CrossRefADSGoogle Scholar
  6. 6.
    S.M. Carroll, An Introduction to General Relativity: Spacetime and Geometry (Addison Wesley, San Francisco, 2004) zbMATHGoogle Scholar
  7. 7.
    R. Banerjee, B.R. Majhi, Quantum tunneling beyond semiclassical approximation. J. High Energy Phys. 0806, 095 (2008). arXiv:0805.2220 [hep-th] CrossRefMathSciNetADSGoogle Scholar
  8. 8.
    S.K. Modak, Corrected entropy of BTZ black hole in tunneling approach. Phys. Lett. B 671, 167 (2009). arXiv:0807.0959 [hep-th] CrossRefMathSciNetADSGoogle Scholar
  9. 9.
    R. Banerjee, B.R. Majhi, Quantum tunneling, trace anomaly and effective metric. Phys. Lett. B 674, 218 (2009). arXiv:0808.3688 [hep-th] CrossRefMathSciNetADSGoogle Scholar
  10. 10.
    B.R. Majhi, Fermion tunneling beyond semiclassical approximation. Phys. Rev. D 79, 044005 (2009). arXiv:0809.1508 [hep-th] CrossRefADSGoogle Scholar
  11. 11.
    B.R. Majhi, S. Samanta, Hawking radiation due to photon and gravitino tunneling. arXiv:0901.2258 [hep-th]
  12. 12.
    R. Banerjee, S.K. Modak, Quantum tunneling, blackbody spectrum and non-logarithmic entropy correction for Lovelock black holes. J. High Energy Phys. 0911, 073 (2009). arXiv:0908.2346 [hep-th] CrossRefMathSciNetADSGoogle Scholar
  13. 13.
    R. Banerjee, S. Gangopadhyay, S.K. Modak, Voros product, noncommutative Schwarzschild black hole and corrected area law. Phys. Lett. B 686, 181 (2010). arXiv:0911.2123 [hep-th] CrossRefMathSciNetADSGoogle Scholar
  14. 14.
    D.V. Fursaev, Temperature and entropy of a quantum black hole and conformal anomaly. Phys. Rev. D 51, R5352 (1995). arXiv:hep-th/9412161 CrossRefMathSciNetADSGoogle Scholar
  15. 15.
    R.B. Mann, S.N. Solodukhin, Universality of quantum entropy for extreme black holes. Nucl. Phys. B 523, 293 (1998). arXiv:hep-th/9709064 zbMATHCrossRefMathSciNetADSGoogle Scholar
  16. 16.
    S. Das, P. Majumdar, R.K. Bhaduri, General logarithmic corrections to black hole entropy. Class. Quantum Gravity 19, 2355 (2002). arXiv:hep-th/0111001 zbMATHCrossRefMathSciNetADSGoogle Scholar
  17. 17.
    S.S. More, Higher order corrections to black hole entropy. Class. Quantum Gravity 22, 4129 (2005). gr-qc/0410071 zbMATHCrossRefMathSciNetADSGoogle Scholar
  18. 18.
    S. Mukherjee, S.S. Pal, Logarithmic corrections to black hole entropy and AdS/CFT correspondence. J. High Energy Phys. 0205, 026 (2002). arXiv:hep-th/0205164 CrossRefADSGoogle Scholar
  19. 19.
    S. Carlip, Logarithmic corrections to black hole entropy from the Cardy formula. Class. Quantum Gravity 17, 4175 (2000). arXiv:gr-qc/0005017 zbMATHCrossRefMathSciNetADSGoogle Scholar
  20. 20.
    M.R. Setare, Logarithmic correction to the Cardy-Verlinde formula in Achucarro-Ortiz black hole. Eur. Phys. J. C 33 (2004). arXiv:hep-th/0309134
  21. 21.
    G. Hooft, The scattering matrix approach for the quantum black hole: an overview. Int. J. Mod. Phys. A 11, 4623 (1996). arXiv:gr-qc/9607022 zbMATHCrossRefADSGoogle Scholar
  22. 22.
    D.N. Page, Hawking radiation and thermodynamics of black holes. New J. Phys. 7, 203 (2005). arXiv:hep-th/0409024 CrossRefMathSciNetADSGoogle Scholar
  23. 23.
    S. Sarkar, S. Shankaranarayanan, L. Sriramkumar, Sub-leading contributions to the black hole entropy in the brick wall approach. Phys. Rev. D 78, 024003 (2008). arXiv:0710.2013 [gr-qc] CrossRefMathSciNetADSGoogle Scholar
  24. 24.
    H. Rawson, Inorganic Glass Forming Systems (Academic Press, New York, 1967) Google Scholar
  25. 25.
    J. Wong, C.A. Angell, Glass Structure by Spectroscopy (Dekker, New York, 1976) Google Scholar
  26. 26.
    B.C. Giessen, C.N. Wagner, Liquid metals, in: ed. by S.Z. Beer Chemistry and Physics (Dekker, New York, 2010) Google Scholar
  27. 27.
    P.K. Gupta, C.T. Moynihan, Prigogine-Defay ratio for systems with more than one order parameter. J. Chem. Phys. 65, 4136 (1976) CrossRefADSGoogle Scholar
  28. 28.
    C.T. Moynihan, A.V. Lesikar, Ann. N.Y. Acad. Sci. 371, 151 (1981) ADSGoogle Scholar
  29. 29.
    S.W. Hawking, D.N. Page, Thermodynamics of black holes in anti-de Sitter space. Commun. Math. Phys. 87, 577 (1983) CrossRefMathSciNetADSGoogle Scholar
  30. 30.
    M. Cvetic, S. Nojiri, S.D. Odintsov, Black hole thermodynamics and negative entropy in de Sitter and anti-de Sitter Einstein–Gauss–Bonnet gravity. Nucl. Phys. B 628, 295 (2002). arXiv:hep-th/0112045 zbMATHCrossRefMathSciNetADSGoogle Scholar
  31. 31.
    S. Nojiri, S.D. Odintsov, Anti-de Sitter black hole thermodynamics in higher derivative gravity and new confining-deconfining phases in dual CFT. Phys. Lett. B 521, 87 (2001). Erratum-ibid. 542, 301 (2002). arXiv:hep-th/0109122 zbMATHCrossRefMathSciNetADSGoogle Scholar
  32. 32.
    S. Stotyn, R. Mann, Phase transitions between solitons and black holes in asymptotically AdS/Z k spaces. Phys. Lett. B 681, 472 (2009). arXiv:0909.0919v1 [hep-th] CrossRefMathSciNetADSGoogle Scholar
  33. 33.
    R.G. Cai, S.P. Kim, B. Wang, Ricci flat black holes and Hawking–Page phase transition in Gauss–Bonnet gravity and dilaton gravity. Phys. Rev. D 76, 024011 (2007). arXiv:0705.2469 [hep-th] CrossRefMathSciNetADSGoogle Scholar
  34. 34.
    D. Anninos, G. Pastras, Thermodynamics of the Maxwell–Gauss–Bonnet anti-de Sitter black hole with higher derivative gauge corrections. J. High Energy Phys. 0907, 030 (2009). arXiv:0807.3478 [hep-th] CrossRefADSGoogle Scholar
  35. 35.
    U. Gursoy, E. Kiritsis, L. Mazzanti, F. Nitti, Holography and thermodynamics of 5D dilaton-gravity. J. High Energy Phys. 0905, 033 (2009). arXiv:0812.0792 [hep-th] CrossRefMathSciNetADSGoogle Scholar
  36. 36.
    Y.S. Myung, Y.W. Kim, Y.J. Park, Thermodynamics and phase transitions in the Born–Infeld–anti-de Sitter black holes. Phys. Rev. D 78, 084002 (2008). arXiv:0805.0187 [gr-qc] CrossRefMathSciNetADSGoogle Scholar
  37. 37.
    G. Ishiki, S.W. Kim, J. Nishimura, A. Tsuchiya, Testing a novel large-N reduction for N=4 super Yang–Mills theory on R×S 3. J. High Energy Phys. 0909, 029 (2009). arXiv:0907.1488 [hep-th] CrossRefMathSciNetADSGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2010

Authors and Affiliations

  • Rabin Banerjee
    • 1
  • Sujoy Kumar Modak
    • 1
  • Saurav Samanta
    • 2
    Email author
  1. 1.S.N. Bose National Centre for Basic SciencesKolkataIndia
  2. 2.Narasinha Dutt CollegeHowrahIndia

Personalised recommendations