The European Physical Journal C

, Volume 70, Issue 1–2, pp 233–241 | Cite as

Fitting a sum of exponentials to lattice correlation functions using a non-uniform prior

  • Robert W. JohnsonEmail author
Regular Article - Theoretical Physics


Excited states are extracted from lattice correlation functions using a non-uniform prior on the model parameters. Models for both a single exponential and a sum of exponentials are considered, as well as an alternate model for the orthogonalization of the correlation functions. Results from an analysis of torelon and glueball operators indicate the Bayesian methodology compares well with the usual interpretation of effective mass tables produced by a variational procedure. Applications of the methodology are discussed.


Correlation Function Merit Function Variational Procedure Mass Eigenstates Polyakov Loop 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Asakawa, Y. Nakahara, T. Hatsuda, Prog. Part. Nucl. Phys. 46(2), 459 (2001). CrossRefADSGoogle Scholar
  2. 2.
    T. Yamazaki, S. Aoki, R. Burkhalter, M. Fukugita, S. Hashimoto, N. Ishizuka, Y. Iwasaki, K. Kanaya, T. Kaneko, Y. Kuramashi et al., Phys. Rev. D 65(1), 014501 (2001) CrossRefADSGoogle Scholar
  3. 3.
  4. 4.
    K. Kanaya, Nucl. Phys. A 715, 233c (2003). Quark Matter 2002, Proceedings of the 16th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions, CrossRefADSGoogle Scholar
  5. 5.
    H.R. Fiebig, Phys. Rev. D 65(9), 094512 (2002) CrossRefADSGoogle Scholar
  6. 6.
  7. 7.
    G.L. Bretthorst, W.C. Hutton, J.R. Garbow, J.J. Ackerman, Concepts Magn. Reson., Part A 27A(2), 64 (2005). CrossRefGoogle Scholar
  8. 8.
    I. Montvay, G. Munster, Quantum Fields on a Lattice. Cambridge Monographs on Mathematical Physics (CUP, Cambridge, 1994) CrossRefGoogle Scholar
  9. 9.
    A.D. Kennedy, B.J. Pendleton, Phys. Lett. B 156, 393 (1985) CrossRefADSGoogle Scholar
  10. 10.
    M. Creutz, Phys. Rev. D 36, 515 (1987) CrossRefMathSciNetADSGoogle Scholar
  11. 11.
    R.W. Johnson, Phys. Rev. D 76(7), 074502 (2007). CrossRefADSGoogle Scholar
  12. 12.
    D.S. Sivia, Data Analysis: a Bayesian Primer (OUP, Oxford, 1996) Google Scholar
  13. 13.
    R. Durrett, The Essentials of Probability (Duxbury, Belmont, 1994) Google Scholar
  14. 14.
    G. D’Agostini, In: Bayesian Statistics 6: Proceedings of the Sixth Valencia International Meeting (Oxford Science Publications, Oxford, 1998). arXiv:physics/9811045, Google Scholar
  15. 15.
  16. 16.
  17. 17.
    M.J. Teper, Phys. Rev. D 59(1), 014512 (1998). CrossRefADSGoogle Scholar
  18. 18.
    F.S. Acton, Numerical Methods That Work (Harper & Row, New York, 1970) zbMATHGoogle Scholar
  19. 19.
    W. Press, S. Teukolsky, W. Vetterling, B. Flannery, Numerical Recipes in C, 2nd edn. (Cambridge University Press, Cambridge, 1992) zbMATHGoogle Scholar
  20. 20.
    C. Spengler, M. Huber, B.C. Hiesmayr, A composite parameterization of unitary groups, density matrices and subspaces. arXiv:1004.5252 (2010),

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2010

Authors and Affiliations

  1. 1.Alphawave ResearchAtlantaUSA

Personalised recommendations