Advertisement

The European Physical Journal C

, Volume 69, Issue 1–2, pp 1–18 | Cite as

Improved parton showers at large transverse momenta

  • R. CorkeEmail author
  • T. Sjöstrand
Regular Article - Theoretical Physics

Abstract

Several methods to improve the parton-shower description of hard processes by an injection of matrix-element-based information have been presented over the years. In this article we study (re)weighting schemes for the first/hardest emission. One objective is to provide a consistent matching of the POWHEG next-to-leading order generator to the Pythia shower algorithms. Another is to correct the default behaviour of these showers at large transverse momenta, based on a comparison with real-emission matrix elements.

Keywords

High Energy Phys Emission Probability Kinematical Limit Shower Emission Resonant Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Catani, F. Krauss, R. Kuhn, B.R. Webber, J. High Energy Phys. 11, 063 (2001). arXiv:hep-ph/0109231 CrossRefADSGoogle Scholar
  2. 2.
    L. Lönnblad, J. High Energy Phys. 05, 046 (2002). arXiv:hep-ph/0112284 CrossRefGoogle Scholar
  3. 3.
    S. Hoeche, F. Krauss, S. Schumann, F. Siegert, J. High Energy Phys. 05, 053 (2009). arXiv:0903.1219 [hep-ph] CrossRefADSGoogle Scholar
  4. 4.
    K. Hamilton, P. Richardson, J. Tully, J. High Energy Phys. 11, 038 (2009). arXiv:0905.3072 [hep-ph] CrossRefADSGoogle Scholar
  5. 5.
  6. 6.
    S. Mrenna, P. Richardson, J. High Energy Phys. 05, 040 (2004). arXiv:hep-ph/0312274 CrossRefADSGoogle Scholar
  7. 7.
    J. Alwall et al., Eur. Phys. J. C 53, 473–500 (2008). arXiv:0706.2569 [hep-ph] CrossRefADSGoogle Scholar
  8. 8.
    N. Lavesson, L. Lönnblad, J. High Energy Phys. 04, 085 (2008). arXiv:0712.2966 [hep-ph] CrossRefADSGoogle Scholar
  9. 9.
    S. Frixione, B.R. Webber, J. High Energy Phys. 06, 029 (2002). arXiv:hep-ph/0204244 CrossRefADSGoogle Scholar
  10. 10.
    S. Frixione, P. Nason, B.R. Webber, J. High Energy Phys. 08, 007 (2003). arXiv:hep-ph/0305252 CrossRefADSGoogle Scholar
  11. 11.
    O. Latunde-Dada, J. High Energy Phys. 11, 040 (2007). arXiv:0708.4390 [hep-ph] CrossRefADSGoogle Scholar
  12. 12.
    P. Nason, J. High Energy Phys. 11, 040 (2004). arXiv:hep-ph/0409146 CrossRefADSGoogle Scholar
  13. 13.
    S. Frixione, P. Nason, C. Oleari, J. High Energy Phys. 11, 070 (2007). arXiv:0709.2092 [hep-ph] CrossRefADSGoogle Scholar
  14. 14.
    G. Marchesini, B.R. Webber, Nucl. Phys. B 238, 1 (1984) CrossRefADSGoogle Scholar
  15. 15.
    G. Marchesini, B.R. Webber, Nucl. Phys. B 310, 461 (1988) CrossRefADSGoogle Scholar
  16. 16.
    T. Sjöstrand, P.Z. Skands, Eur. Phys. J. C 39, 129–154 (2005). arXiv:hep-ph/0408302 CrossRefADSGoogle Scholar
  17. 17.
    T. Sjöstrand, S. Mrenna, P.Z. Skands, J. High Energy Phys. 05, 026 (2006). arXiv:hep-ph/0603175 CrossRefADSGoogle Scholar
  18. 18.
    T. Sjöstrand, S. Mrenna, P.Z. Skands, Comput. Phys. Commun. 178, 852–867 (2008). arXiv:0710.3820 [hep-ph] CrossRefADSGoogle Scholar
  19. 19.
    S. Frixione, P. Nason, G. Ridolfi, arXiv:0707.3081 [hep-ph]
  20. 20.
    J. Alwall et al., J. High Energy Phys. 09, 028 (2007). arXiv:0706.2334 [hep-ph] CrossRefADSGoogle Scholar
  21. 21.
    T. Plehn, D. Rainwater, P.Z. Skands, Phys. Lett. B 645, 217–221 (2007). arXiv:hep-ph/0510144 CrossRefADSGoogle Scholar
  22. 22.
    W.T. Giele, D.A. Kosower, P.Z. Skands, Phys. Rev. D 78, 014026 (2008). arXiv:0707.3652 [hep-ph] CrossRefADSGoogle Scholar
  23. 23.
    C.W. Bauer, F.J. Tackmann, J. Thaler, J. High Energy Phys. 12, 010 (2008). arXiv:0801.4026 [hep-ph] CrossRefADSGoogle Scholar
  24. 24.
    N. Lavesson, L. Lönnblad, J. High Energy Phys. 12, 070 (2008). arXiv:0811.2912 [hep-ph] CrossRefADSGoogle Scholar
  25. 25.
    T. Sjöstrand, Phys. Lett. B 157, 321 (1985) CrossRefADSGoogle Scholar
  26. 26.
    M. Bengtsson, T. Sjöstrand, Phys. Lett. B 185, 435 (1987) CrossRefADSGoogle Scholar
  27. 27.
    E. Norrbin, T. Sjöstrand, Nucl. Phys. B 603, 297–342 (2001). arXiv:hep-ph/0010012 CrossRefADSGoogle Scholar
  28. 28.
    G. Miu, T. Sjöstrand, Phys. Lett. B 449, 313–320 (1999). arXiv:hep-ph/9812455 CrossRefADSGoogle Scholar
  29. 29.
    M.H. Seymour, Comput. Phys. Commun. 90, 95–101 (1995). arXiv:hep-ph/9410414 CrossRefADSGoogle Scholar
  30. 30.
    G. Corcella, M.H. Seymour, Phys. Lett. B 442, 417–426 (1998). arXiv:hep-ph/9809451 CrossRefADSGoogle Scholar
  31. 31.
    G. Corcella, M.H. Seymour, Nucl. Phys. B 565, 227–244 (2000). arXiv:hep-ph/9908388 CrossRefADSGoogle Scholar
  32. 32.
    P. Nason, G. Ridolfi, J. High Energy Phys. 08, 077 (2006). arXiv:hep-ph/0606275 CrossRefADSGoogle Scholar
  33. 33.
    S. Alioli, P. Nason, C. Oleari, E. Re, J. High Energy Phys. 07, 060 (2008). arXiv:0805.4802 [hep-ph] CrossRefADSGoogle Scholar
  34. 34.
    S. Frixione, P. Nason, G. Ridolfi, J. High Energy Phys. 09, 126 (2007). arXiv:0707.3088 [hep-ph] CrossRefADSGoogle Scholar
  35. 35.
    S. Alioli, P. Nason, C. Oleari, E. Re, J. High Energy Phys. 09, 111 (2009). arXiv:0907.4076 [hep-ph] CrossRefADSGoogle Scholar
  36. 36.
    S. Alioli, P. Nason, C. Oleari, E. Re, J. High Energy Phys. 04, 002 (2009). arXiv:0812.0578 [hep-ph] CrossRefADSGoogle Scholar
  37. 37.
    P. Nason, C. Oleari, arXiv:0911.5299 [hep-ph]
  38. 38.
    S. Alioli, P. Nason, C. Oleari, E. Re, arXiv:1002.2581 [hep-ph]
  39. 39.
    T. Sjöstrand, M. van Zijl, Phys. Rev. D 36, 2019 (1987) CrossRefADSGoogle Scholar
  40. 40.
    R. Corke, T. Sjöstrand, J. High Energy Phys. 01, 035 (2010). arXiv:0911.1909 [hep-ph] CrossRefADSGoogle Scholar
  41. 41.
    J. Alwall et al., Comput. Phys. Commun. 176, 300–304 (2007). arXiv:hep-ph/0609017 CrossRefADSGoogle Scholar
  42. 42.
    M.R. Whalley, D. Bourilkov, R.C. Group, arXiv:hep-ph/0508110
  43. 43.
    J. Pumplin et al., J. High Energy Phys. 07, 012 (2002). arXiv:hep-ph/0201195 CrossRefADSGoogle Scholar
  44. 44.
    E. Boos et al., arXiv:hep-ph/0109068
  45. 45.
    J.M. Butterworth et al., arXiv:1003.1643 [hep-ph]
  46. 46.
    S. Catani, B.R. Webber, G. Marchesini, Nucl. Phys. B 349, 635–654 (1991) CrossRefADSGoogle Scholar
  47. 47.
    W.T. Giele, E.W.N. Glover, D.A. Kosower, Nucl. Phys. B 403, 633–670 (1993). arXiv:hep-ph/9302225 CrossRefADSGoogle Scholar
  48. 48.
    D. Majumder, K. Mazumdar, T. Sjostrand, arXiv:1002.4296 [Unknown]
  49. 49.
    U. Baur, T. Han, J. Ohnemus, Phys. Rev. D 48, 5140–5161 (1993). arXiv:hep-ph/9305314 CrossRefADSGoogle Scholar
  50. 50.
    F.A. Berends, R. Kleiss, P. De Causmaecker, R. Gastmans, T.T. Wu, Phys. Lett. B 103, 124 (1981) CrossRefADSGoogle Scholar
  51. 51.
    B. Andersson, G. Gustafson, H. Kharraziha, J. Samuelsson, Z. Phys. C 71, 613–624 (1996) CrossRefADSGoogle Scholar
  52. 52.
    R.K. Ellis, G. Marchesini, B.R. Webber, Nucl. Phys. B 286, 643 (1987) CrossRefADSGoogle Scholar
  53. 53.
    J. Alwall, S. de Visscher, F. Maltoni, J. High Energy Phys. 02, 017 (2009). arXiv:0810.5350 [hep-ph] CrossRefADSGoogle Scholar
  54. 54.
    B.C. Allanach, et al., Eur. Phys. J. C 25, 113–123 (2002). arXiv:hep-ph/0202233 CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2010

Authors and Affiliations

  1. 1.Theoretical High Energy Physics, Department of Astronomy and Theoretical PhysicsLund UniversityLundSweden

Personalised recommendations