Advertisement

The European Physical Journal C

, Volume 69, Issue 1–2, pp 159–167 | Cite as

Kπ form factors with reduced model dependence

  • The RBC-UKQCD Collaboration
  • P. A. Boyle
  • J. M. Flynn
  • A. JüttnerEmail author
  • C. Kelly
  • C. Maynard
  • H. Pedroso de Lima
  • C. T. Sachrajda
  • J. M. Zanotti
Regular Article - Theoretical Physics

Abstract

Using partially twisted boundary conditions we compute the Kπ semi-leptonic form factors in the range of momentum transfers \(0\lesssim q^{2}\leq q^{2}_{\max}=(m_{K}-m_{\pi})^{2}\) in lattice QCD with N f =2+1 dynamical flavours. In this way we are able to determine \(f_{+}^{K\pi}(0)\) without any interpolation in the momentum transfer, thus eliminating one source of systematic error. This study confirms our earlier phenomenological ansatz for the strange quark mass dependence of the scalar form factor. We identify and estimate potentially significant NNLO effects in the chiral expansion that guides the extrapolation of the data to the physical point. Our main result is \(f_{+}^{K\pi}(0)=0.9599(34)(^{+31}_{-47})(14)\), where the first error is statistical, the second error is due to the uncertainties in the chiral extrapolation of the lattice data and the last error is an estimate of potential discretisation effects.

Keywords

Form Factor Chiral Perturbation Theory Valence Quark Chiral Expansion Twist Boundary Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Becirevic et al., The Kπ vector form factor at zero momentum transfer on the lattice. Nucl. Phys. B 705, 339–362 (2005). arXiv:hep-ph/0403217 CrossRefADSGoogle Scholar
  2. 2.
    N. Tsutsui et al. (JLQCD Collaboration), Kaon semileptonic decay form factors in two-flavor QCD. Proc. Sci. LAT2005, 357 (2006). arXiv:hep-lat/0510068 Google Scholar
  3. 3.
    C. Dawson, T. Izubuchi, T. Kaneko, S. Sasaki, A. Soni, Vector form factor in K l3 semileptonic decay with two flavors of dynamical domain-wall quarks. Phys. Rev. D 74, 114502 (2006). arXiv:hep-ph/0607162 CrossRefADSGoogle Scholar
  4. 4.
    D. Brommel et al. (The QCDSF Collaboration), Kaon semileptonic decay form factors from N f=2 non-perturbatively O(a)-improved Wilson fermions. Proc. Sci. LAT2007, 364 (2007). arXiv:0710.2100 Google Scholar
  5. 5.
    M. Okamoto (Fermilab Lattice Collaboration), Full CKM matrix with lattice QCD. arXiv:hep-lat/0412044
  6. 6.
    P.A. Boyle et al., K l3 semileptonic form factor from 2+1 flavour lattice QCD. Phys. Rev. Lett. 100, 141601 (2008) arXiv:0710.5136 CrossRefMathSciNetADSGoogle Scholar
  7. 7.
    V. Lubicz, F. Mescia, S. Simula, C. Tarantino (the ETM Collaboration), Kπ semileptonic form factors from two-flavor lattice QCD. Phys. Rev. D 80, 111502 (2009). arXiv:0906.4728 CrossRefADSGoogle Scholar
  8. 8.
    J. Gasser, H. Leutwyler, Low-energy expansion of meson form-factors. Nucl. Phys. B 250, 517–538 (1985) CrossRefADSGoogle Scholar
  9. 9.
    D. Becirevic, G. Martinelli, G. Villadoro, The Ademollo-Gatto theorem for lattice semileptonic decays. Phys. Lett. B 633, 84–88 (2006). arXiv:hep-lat/0508013 CrossRefADSGoogle Scholar
  10. 10.
    P.A. Boyle, J.M. Flynn, A. Jüttner, C.T. Sachrajda, J.M. Zanotti, Hadronic form factors in lattice QCD at small and vanishing momentum transfer. J. High Energy Phys. 05, 016 (2007). arXiv:hep-lat/0703005 Google Scholar
  11. 11.
    P.A. Boyle, A. Jüttner, C. Kelly, R.D. Kenway, Use of stochastic sources for the lattice determination of light quark physics. arXiv:0804.1501
  12. 12.
    P.A. Boyle et al., The pion’s electromagnetic form factor at small momentum transfer in full lattice QCD. J. High Energy Phys. 07, 112 (2008). arXiv:0804.3971 ADSGoogle Scholar
  13. 13.
    J.M. Flynn, C.T. Sachrajda (RBC Collaboration), SU(2) chiral perturbation theory for K l3 decay amplitudes. arXiv:0809.1229
  14. 14.
    M. Antonelli, et al. (FlaviaNet Working Group on Kaon Decays Collaboration), Precision tests of the Standard Model with leptonic and semileptonic kaon decays. arXiv:0801.1817
  15. 15.
    C.T. Sachrajda, G. Villadoro, Twisted boundary conditions in lattice simulations. Phys. Lett. B 609, 73–85 (2005) arXiv:hep-lat/0411033 CrossRefADSGoogle Scholar
  16. 16.
    P.F. Bedaque, J.-W. Chen, Twisted valence quarks and hadron interactions on the lattice. Phys. Lett. B 616, 208–214 (2005) arXiv:hep-lat/0412023 CrossRefADSGoogle Scholar
  17. 17.
    P.F. Bedaque, Aharonov-Bohm effect and nucleon nucleon phase shifts on the lattice. Phys. Lett. B 593, 82–88 (2004). arXiv:nucl-th/0402051 CrossRefADSGoogle Scholar
  18. 18.
    G.M. de Divitiis, R. Petronzio, N. Tantalo, On the discretization of physical momenta in lattice QCD. Phys. Lett. B 595, 408–413 (2004). arXiv:hep-lat/0405002 CrossRefADSGoogle Scholar
  19. 19.
    B.C. Tiburzi, Twisted quarks and the nucleon axial current. Phys. Lett. B 617, 40–48 (2005). arXiv:hep-lat/0504002 CrossRefADSGoogle Scholar
  20. 20.
    J.M. Flynn, A. Jüttner, C.T. Sachrajda (UKQCD Collaboration), A numerical study of partially twisted boundary conditions. Phys. Lett. B 632, 313–318 (2006). arXiv:hep-lat/0506016 CrossRefADSGoogle Scholar
  21. 21.
    D. Guadagnoli, F. Mescia, S. Simula, Lattice study of semileptonic form factors with twisted boundary conditions. Phys. Rev. D 73, 114504 (2006). arXiv:hep-lat/0512020 CrossRefADSGoogle Scholar
  22. 22.
    G. Aarts, C. Allton, J. Foley, S. Hands, S. Kim, Meson spectral functions at nonzero momentum in hot QCD. arXiv:hep-lat/0607012
  23. 23.
    B.C. Tiburzi, Flavor twisted boundary conditions and isovector form factors. Phys. Lett. B 641, 342–349 (2006). arXiv:hep-lat/0607019 CrossRefADSGoogle Scholar
  24. 24.
    T.B. Bunton, F.J. Jiang, B.C. Tiburzi, Extrapolations of lattice meson form factors. Phys. Rev. D 74, 034514 (2006). arXiv:hep-lat/0607001 CrossRefADSGoogle Scholar
  25. 25.
    Y. Iwasaki, Renormalization group analysis of lattice theories and improved lattice action: two-dimensional nonlinear O(N) sigma model. Nucl. Phys. B 258, 141–156 (1985) CrossRefADSGoogle Scholar
  26. 26.
    Y. Iwasaki, T. Yoshie, Renormalization group improved action for SU(3) lattice gauge theory and the string tension. Phys. Lett. B 143, 449 (1984) CrossRefADSGoogle Scholar
  27. 27.
    C. Allton, et al. (RBC and UKQCD Collaboration), 2+1 flavor domain wall QCD on a (2 fm)3 lattice: light meson spectroscopy with L s=16. Phys. Rev. D 76, 014504 (2007). arXiv:hep-lat/0701013 CrossRefADSGoogle Scholar
  28. 28.
    C. Allton et al. (RBC-UKQCD Collaboration), Physical results from 2+1 flavor domain wall QCD and SU(2) chiral perturbation theory. Phys. Rev. D 78, 114509 (2008). arXiv:0804.0473 CrossRefADSGoogle Scholar
  29. 29.
    D.B. Kaplan, A method for simulating chiral fermions on the lattice. Phys. Lett. B 288, 342–347 (1992). arXiv:hep-lat/9206013 CrossRefMathSciNetADSGoogle Scholar
  30. 30.
    Y. Shamir, Chiral fermions from lattice boundaries. Nucl. Phys. B 406, 90–106 (1993). arXiv:hep-lat/9303005 CrossRefMathSciNetADSGoogle Scholar
  31. 31.
    J. Bijnens, P. Talavera, K l3 decays in chiral perturbation theory. Nucl. Phys. B 669, 341–362 (2003). arXiv:hep-ph/0303103 CrossRefADSGoogle Scholar
  32. 32.
    V. Bernard, E. Passemar, Chiral extrapolation of the strangeness changing Kπ form factor. arXiv:0912.3792

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2010

Authors and Affiliations

  • The RBC-UKQCD Collaboration
  • P. A. Boyle
    • 1
  • J. M. Flynn
    • 2
  • A. Jüttner
    • 3
    Email author
  • C. Kelly
    • 1
  • C. Maynard
    • 1
  • H. Pedroso de Lima
    • 2
  • C. T. Sachrajda
    • 2
  • J. M. Zanotti
    • 1
  1. 1.School of Physics and AstronomyUniversity of EdinburghEdinburghUK
  2. 2.School of Physics and AstronomyUniversity of SouthamptonSouthamptonUK
  3. 3.Theory Group, Physics DepartmentCERNGeneva 23Switzerland

Personalised recommendations