Advertisement

The European Physical Journal C

, Volume 69, Issue 1–2, pp 241–263 | Cite as

Tachyonic γ-ray bursts generated by nonlocal plasma currents

  • Roman TomaschitzEmail author
Regular Article - Theoretical Physics

Abstract

The dispersion relations of superluminal wave propagation in electron plasmas are derived, and the tachyonic energy flux, the velocity of energy transport, and the relaxation time asymptotics of the conductivity are studied. The formalism is based on Maxwell-type equations for Proca fields with negative mass-square in dispersive and dissipative media. Specifically, superluminal radiation fields generated by the ultra-relativistic electronic source plasma of γ-ray bursts (GRBs) are investigated. The radiation field is coupled to the shock-heated electron gas by a frequency-dependent fine-structure constant. The varying coupling constant generates long-range dispersion in the charge and current densities. At high energy, the coupling strength approaches a finite limit, so that the Proca field becomes minimally coupled to the electron current. The tachyonic fine-structure constant scales with the frequency-dependent superluminal velocity of the radiated modes. This scaling is manifested in the tachyonic flux densities of the GRB plasma, so that the scaling exponent can be extracted from spectral maps in the soft γ-ray band. To this end, tachyonic spectral fits of GRB 930506, GRB 950425, and GRB 910503 are performed. The scaling amplitude of the fine-structure constant is inferred from the burst duration. The transversal and longitudinal tachyonic luminosity of the source plasma is calculated in the high-temperature regime. Estimates of the plasma temperature and the internal energy of the ultra-relativistic electron gas are obtained.

Keywords

Dispersion Relation Burst Duration Fourier Amplitude Lorentz Condition Tachyonic Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Wentzel, Quantum Theory of Fields (Interscience, New York, 1949) Google Scholar
  2. 2.
    R. Tomaschitz, Class. Quantum Gravity 18, 4395 (2001) zbMATHCrossRefMathSciNetADSGoogle Scholar
  3. 3.
    R. Tomaschitz, Europhys. Lett. 89, 39002 (2010) CrossRefADSGoogle Scholar
  4. 4.
    S. Tanaka, Prog. Theor. Phys. 24, 171 (1960) CrossRefADSGoogle Scholar
  5. 5.
    K. Kamoi, S. Kamefuchi, Prog. Theor. Phys. 45, 1646 (1971) CrossRefADSGoogle Scholar
  6. 6.
    H.M. Fried, Y. Gabellini, arXiv:0709.0414
  7. 7.
    R. Tomaschitz, Eur. Phys. J. B 17, 523 (2000) CrossRefMathSciNetADSGoogle Scholar
  8. 8.
    R. Tomaschitz, Astropart. Phys. 27, 92 (2007) CrossRefADSGoogle Scholar
  9. 9.
    R. Tomaschitz, Appl. Phys. B (2010). doi: 10.1007/s00340-010-4182-8 zbMATHGoogle Scholar
  10. 10.
    B.M. Bolotovskiĭ, V.P. Bykov, Sov. Phys. Usp. 33, 477 (1990) CrossRefADSGoogle Scholar
  11. 11.
    B.M. Bolotovskiĭ, A.V. Serov, Radiat. Phys. Chem. 75, 813 (2006) CrossRefADSGoogle Scholar
  12. 12.
    A.V. Bessarab et al., IEEE Trans. Plasma Sci. 32, 1400 (2004) CrossRefADSGoogle Scholar
  13. 13.
    A.V. Bessarab et al., Radiat. Phys. Chem. 75, 825 (2006) CrossRefADSGoogle Scholar
  14. 14.
    M.S. Bigelow, N.N. Lepeshkin, R.W. Boyd, Science 301, 200 (2003) CrossRefADSGoogle Scholar
  15. 15.
    T. Baba, Nature Photonics 2, 465 (2008) CrossRefADSGoogle Scholar
  16. 16.
    L. Thévenaz, Nature Photonics 2, 474 (2008) CrossRefADSGoogle Scholar
  17. 17.
    G. Dolling et al., Science 312, 892 (2006) CrossRefADSGoogle Scholar
  18. 18.
    G.M. Gehring et al., Science 312, 895 (2006) CrossRefADSGoogle Scholar
  19. 19.
    Y. Kaneko et al., Astrophys. J. 677, 1168 (2008) CrossRefADSGoogle Scholar
  20. 20.
    R. Tomaschitz, Eur. Phys. J. C 49, 815 (2007) CrossRefADSGoogle Scholar
  21. 21.
    R. Tomaschitz, Ann. Phys. 322, 677 (2007) zbMATHCrossRefADSGoogle Scholar
  22. 22.
    R. Tomaschitz, Physica B 404, 1383 (2009) CrossRefADSGoogle Scholar
  23. 23.
    L.D. Landau, E.M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, Oxford, 1984) Google Scholar
  24. 24.
    E.J. Post, Formal Structure of Electromagnetics (Dover, New York, 1997) Google Scholar
  25. 25.
    M. Born, E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, 2003) Google Scholar
  26. 26.
    R. Tomaschitz, Opt. Commun. 282, 1710 (2009) CrossRefADSGoogle Scholar
  27. 27.
    R. Tomaschitz, Europhys. Lett. 84, 19001 (2008) CrossRefADSGoogle Scholar
  28. 28.
    R. Tomaschitz, Physica A 307, 375 (2002) zbMATHCrossRefADSGoogle Scholar
  29. 29.
    R. Tomaschitz, Eur. Phys. J. D 32, 241 (2005) CrossRefMathSciNetADSGoogle Scholar
  30. 30.
    S. Ichimaru, Rev. Mod. Phys. 65, 255 (1993) CrossRefADSGoogle Scholar
  31. 31.
    U. Teubner, P. Gibbon, Rev. Mod. Phys. 81, 445 (2009) CrossRefADSGoogle Scholar
  32. 32.
    R. Tomaschitz, Physica A 385, 558 (2007) CrossRefADSGoogle Scholar
  33. 33.
    R. Tomaschitz, Physica A 387, 3480 (2008) CrossRefADSGoogle Scholar
  34. 34.
    R. Tomaschitz, Physica B 405, 1022 (2010) CrossRefADSGoogle Scholar
  35. 35.
    J.L. Racusin et al., Nature 455, 183 (2008) CrossRefADSGoogle Scholar
  36. 36.
    A.A. Abdo et al., Science 323, 1688 (2009) CrossRefADSGoogle Scholar
  37. 37.
    N.R. Tanvir et al., Nature 461, 1254 (2009) CrossRefADSGoogle Scholar
  38. 38.
    A. Minguzzi, M.P. Tosi, Physica B 300, 27 (2001) CrossRefADSGoogle Scholar
  39. 39.
    R. Tomaschitz, Phys. Lett. A 372, 4344 (2008) CrossRefADSGoogle Scholar
  40. 40.
    R. Tomaschitz, Europhys. Lett. 85, 29001 (2009) CrossRefADSGoogle Scholar
  41. 41.
    R. Tomaschitz, Eur. Phys. J. C 45, 493 (2006) CrossRefADSGoogle Scholar
  42. 42.
    W. Magnus, F. Oberhettinger, R.P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics (Springer, New York, 1966) zbMATHGoogle Scholar
  43. 43.
    R. Tomaschitz, Phys. Lett. A 366, 289 (2007) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2010

Authors and Affiliations

  1. 1.Department of PhysicsHiroshima UniversityHigashi-HiroshimaJapan

Personalised recommendations