The European Physical Journal C

, Volume 69, Issue 1–2, pp 139–146 | Cite as

Annihilation-type charmless radiative decays of B meson in non-universal Z′ model

  • Juan Hua
  • C. S. KimEmail author
  • Ying Li
Regular Article - Theoretical Physics


We study charmless pure annihilation type radiative B decays within the QCD factorization approach. After adding the vertex corrections to the naive factorization approach, we find that the branching ratios of \(\overline{B}^{0}_{d}\to\phi\gamma\), \(\overline{B}^{0}_{s}\to\rho^{0}\gamma\) and \(\overline{B}^{0}_{s}\to\omega\gamma\) within the standard model are at the order of \(\mathcal{O}(10^{-12})\), \(\mathcal{O}(10^{-10})\) and \(\mathcal{O}(10^{-11})\), respectively. The smallness of these decays in the standard model makes them sensitive probes of flavor physics beyond the standard model. To explore their physics potential, we have estimated the contribution of Z′ boson in the decays. Within the allowed parameter space, the branching ratios of these decay modes can be enhanced remarkably in the non-universal Z′ model: The branching ratios can reach to \(\mathcal{O}(10^{-8})\) for \(\overline{B}_{s}^{0}\to \rho^{0}(\omega)\gamma\) and \(\mathcal{O}(10^{-10})\) for the \(\overline{B}_{d}^{0}\to \phi \gamma\), which are large enough for LHC-b and/or Super B-factories to detect those channels in near future. Moreover, we also predict large CP asymmetries in suitable parameter space. The observation of these modes could in turn help us to constrain the Z′ mass within the model.


Decay Mode High Energy Phys Weak Phase Exotic Quark Naive Factorization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Ali, A. Parkhomenko, arXiv:hep-ph/0610149
  2. 2.
    S.W. Bosch, G. Buchalla, Nucl. Phys. B 621, 459 (2002). arXiv:hep-ph/0106081 CrossRefADSGoogle Scholar
  3. 3.
    P. Ball, G.W. Jones, R. Zwicky, Phys. Rev. D 75, 054004 (2007). arXiv:hep-ph/0612081 CrossRefADSGoogle Scholar
  4. 4.
    W. Wang, R.H. Li, C.D. Lu, arXiv:0711.0432 [hep-ph]
  5. 5.
    X.Q. Li, G.R. Lu, R.M. Wang, Y.D. Yang, Eur. Phys. J. C 36, 97 (2004). arXiv:hep-ph/0305283 CrossRefADSGoogle Scholar
  6. 6.
    G.R. Lu, R.M. Wang, Y.D. Yang, Eur. Phys. J. C 34, 291 (2004). arXiv:hep-ph/0308256 CrossRefADSGoogle Scholar
  7. 7.
    Y. Li, C.D. Lu, Phys. Rev. D 74, 097502 (2006). arXiv:hep-ph/0605220 CrossRefADSGoogle Scholar
  8. 8.
    P. Langacker, M. Plumacher, Phys. Rev. D 62, 013006 (2000). arXiv:hep-ph/0001204 CrossRefADSGoogle Scholar
  9. 9.
    G. Buchalla, G. Burdman, C.T. Hill, D. Kominis, Phys. Rev. D 53, 5185 (1996). arXiv:hep-ph/9510376 CrossRefADSGoogle Scholar
  10. 10.
    E. Nardi, Phys. Rev. D 48, 1240 (1993). arXiv:hep-ph/9209223 CrossRefADSGoogle Scholar
  11. 11.
    J. Erler, P. Langacker, S. Munir, E.R. Pena, J. High Energy Phys. 0908, 017 (2009). arXiv:0906.2435 [hep-ph] CrossRefADSGoogle Scholar
  12. 12.
    S.L. Chen, N. Okada, Phys. Lett. B 669, 34 (2008). arXiv:0808.0331 [hep-ph] CrossRefADSGoogle Scholar
  13. 13.
    V. Barger, C.W. Chiang, P. Langacker, H.S. Lee, Phys. Lett. B 598, 218 (2004). arXiv:hep-ph/0406126 CrossRefADSGoogle Scholar
  14. 14.
    V. Barger, L. Everett, J. Jiang, P. Langacker, T. Liu, C. Wagner, Phys. Rev. D 80, 055008 (2009). arXiv:0902.4507 [hep-ph] CrossRefADSGoogle Scholar
  15. 15.
    V. Barger, L.L. Everett, J. Jiang, P. Langacker, T. Liu, C.E.M. Wagner, arXiv:0906.3745 [hep-ph]
  16. 16.
    V. Barger, C.W. Chiang, P. Langacker, H.S. Lee, Phys. Lett. B 580, 186 (2004). arXiv:hep-ph/0310073 CrossRefADSGoogle Scholar
  17. 17.
    K. Cheung, C.W. Chiang, N.G. Deshpande, J. Jiang, Phys. Lett. B 652, 285 (2007). arXiv:hep-ph/0604223 CrossRefADSGoogle Scholar
  18. 18.
    C.W. Chiang, N.G. Deshpande, J. Jiang, J. High Energy Phys. 0608, 075 (2006). arXiv:hep-ph/0606122 CrossRefADSGoogle Scholar
  19. 19.
    C.H. Chen, H. Hatanaka, Phys. Rev. D 73, 075003 (2006). arXiv:hep-ph/0602140 CrossRefADSGoogle Scholar
  20. 20.
    Q. Chang, X.Q. Li, Y.D. Yang, J. High Energy Phys. 0905, 056 (2009). arXiv:0903.0275 [hep-ph] CrossRefADSGoogle Scholar
  21. 21.
    Q. Chang, X.Q. Li, Y.D. Yang, arXiv:0907.4408 [hep-ph]
  22. 22.
    C.H. Chen, arXiv:0911.3479 [hep-ph]
  23. 23.
    C.W. Chiang, R.H. Li, C.D. Lu, arXiv:0911.2399 [hep-ph]
  24. 24.
    R. Mohanta, A.K. Giri, Phys. Rev. D 79, 057902 (2009). arXiv:0812.1842 [hep-ph] CrossRefADSGoogle Scholar
  25. 25.
    J. Hua, C.S. Kim, Y. Li, Phys. Lett. B 690, 508 (2010). arXiv:1002.2532 [hep-ph] CrossRefADSGoogle Scholar
  26. 26.
    P. Langacker, arXiv:0801.1345 [hep-ph]
  27. 27.
    M. Beneke, G. Buchalla, M. Neubert, C.T. Sachrajda, Phys. Rev. Lett. 83, 1914 (1999). arXiv:hep-ph/9905312 CrossRefADSGoogle Scholar
  28. 28.
    M. Beneke, G. Buchalla, M. Neubert, C.T. Sachrajda, Nucl. Phys. B 591, 313 (2000). arXiv:hep-ph/0006124 CrossRefADSGoogle Scholar
  29. 29.
    G. Buchalla, A.J. Buras, M.E. Lautenbacher, Rev. Mod. Phys. 68, 1125 (1996) CrossRefADSGoogle Scholar
  30. 30.
    E. Lunghi, D. Pirjol, D. Wyler, Nucl. Phys. B 649, 349 (2003). arXiv:hep-ph/0210091 CrossRefADSGoogle Scholar
  31. 31.
    S. Descotes-Genon, C.T. Sachrajda, Nucl. Phys. B 650, 356 (2003). arXiv:hep-ph/0209216 CrossRefADSGoogle Scholar
  32. 32.
    P. Ball, E. Kou, J. High Energy Phys. 0304, 029 (2003). arXiv:hep-ph/0301135 CrossRefADSGoogle Scholar
  33. 33.
    A.G. Grozin, M. Neubert, Phys. Rev. D 55, 272 (1997). arXiv:hep-ph/9607366 CrossRefADSGoogle Scholar
  34. 34.
    P. Ball, V.M. Braun, Y. Koike, K. Tanaka, Nucl. Phys. B 529, 323 (1998). arXiv:hep-ph/9802299 CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2010

Authors and Affiliations

  1. 1.Department of PhysicsYantai UniversityYantaiChina
  2. 2.Department of Physics and IPAPYonsei UniversitySeoulKorea

Personalised recommendations