Advertisement

The European Physical Journal C

, Volume 69, Issue 1–2, pp 147–157 | Cite as

Simulation of 4d \(\mathcal{N}=1\) supersymmetric Yang–Mills theory with Symanzik improved gauge action and stout smearing

  • K. Demmouche
  • F. Farchioni
  • A. Ferling
  • I. Montvay
  • G. MünsterEmail author
  • E. E. Scholz
  • J. Wuilloud
Regular Article - Theoretical Physics

Abstract

We report on the results of a numerical simulation concerning the low-lying spectrum of four-dimensional \(\mathcal{N}=1\) SU(2) Supersymmetric Yang–Mills (SYM) theory on the lattice with light dynamical gluinos. In the gauge sector the tree-level Symanzik improved gauge action is used, while we use the Wilson formulation in the fermion sector with stout smearing of the gauge links in the Wilson–Dirac operator. The ensembles of gauge configurations were produced with the Two-Step Polynomial Hybrid Monte Carlo (TS-PHMC) updating algorithm. We performed simulations on large lattices up to a size of 243⋅48 at β=1.6. Using QCD units with the Sommer scale being set to r 0=0.5 fm, the lattice spacing is about a≃0.09 fm, and the spatial extent of the lattice corresponds to 2.1 fm. At the lightest simulated gluino mass the spin-1/2 gluino–glue bound state appeared to be considerably heavier than its expected super-partner, the pseudoscalar bound state. Whether supermultiplets are formed remains to be studied in upcoming simulations.

Keywords

High Energy Phys Pion Mass Gluino Mass Wilson Fermion Fermion Action 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Veneziano, S. Yankielowicz, Phys. Lett. B 113, 231 (1982) ADSGoogle Scholar
  2. 2.
    G.R. Farrar, G. Gabadadze, M. Schwetz, Phys. Rev. D 58, 015009 (1998) ADSGoogle Scholar
  3. 3.
    A. Armoni, M. Shifman, G. Veneziano, in From Fields to Strings: Circumnavigating Theoretical Physics, vol. 1, ed. by M. Shifman, A. Vainshtein, J. Wheater (World Scientific, Singapore, 2005), p. 353. hep-th/0403071 Google Scholar
  4. 4.
    F. Farchioni, G. Münster, T. Sudmann, J. Wuilloud, I. Montvay, E.E. Scholz, PoS (LATTICE 2008) 128 Google Scholar
  5. 5.
    F. Farchioni, G. Münster, T. Sudmann, J. Wuilloud, I. Montvay, E.E. Scholz, PoS (LATTICE 2007) 135 Google Scholar
  6. 6.
    F. Farchioni, G. Münster, T. Sudmann, J. Wuilloud, I. Montvay, E.E. Scholz, Eur. Phys. J. C 52, 305 (2007) CrossRefADSGoogle Scholar
  7. 7.
    G. Curci, G. Veneziano, Nucl. Phys. B 292, 555 (1987) CrossRefADSGoogle Scholar
  8. 8.
    A. Donini, M. Guagnelli, P. Hernandez, A. Vladikas, Nucl. Phys. B 523, 529 (1998) CrossRefADSGoogle Scholar
  9. 9.
    I. Montvay, Int. J. Mod. Phys. A 17, 2377 (2002) zbMATHCrossRefMathSciNetADSGoogle Scholar
  10. 10.
    I. Campos, A. Feo, R. Kirchner, S. Luckmann, I. Montvay, G. Münster, K. Spanderen, J. Westphalen, Eur. Phys. J. C 11, 507 (1999) CrossRefGoogle Scholar
  11. 11.
    F. Farchioni, A. Feo, T. Galla, C. Gebert, R. Kirchner, I. Montvay, G. Münster, A. Vladikas, Eur. Phys. J. C 23, 719 (2002) zbMATHCrossRefGoogle Scholar
  12. 12.
    F. Farchioni, R. Peetz, Eur. Phys. J. C 39, 87 (2005) CrossRefADSGoogle Scholar
  13. 13.
    K. Demmouche, F. Farchioni, A. Ferling, G. Münster, J. Wuilloud, I. Montvay, E.E. Scholz, PoS (Confinement 2008) 136 Google Scholar
  14. 14.
    K. Demmouche, F. Farchioni, A. Ferling, G. Münster, J. Wuilloud, I. Montvay, E.E. Scholz, PoS (LATTICE 2008) 061 Google Scholar
  15. 15.
    S. Catterall, J. High Energy Phys. 05, 038 (2003) CrossRefMathSciNetADSGoogle Scholar
  16. 16.
    S. Catterall, J. High Energy Phys. 11, 006 (2004) CrossRefMathSciNetADSGoogle Scholar
  17. 17.
    S. Catterall, J. High Energy Phys. 01, 048 (2008) CrossRefMathSciNetADSGoogle Scholar
  18. 18.
    D.B. Kaplan, M. Unsal, J. High Energy Phys. 09, 042 (2005) CrossRefMathSciNetADSGoogle Scholar
  19. 19.
    M. Unsal, J. High Energy Phys. 10, 089 (2006) CrossRefMathSciNetADSGoogle Scholar
  20. 20.
    A. D’Adda, I. Kanamori, N. Kawamoto, K. Nagata, Nucl. Phys. B 798, 168 (2008) zbMATHMathSciNetADSGoogle Scholar
  21. 21.
    S. Catterall, D.B. Kaplan, M. Unsal, Phys. Rep. 484, 71 (2009) CrossRefMathSciNetADSGoogle Scholar
  22. 22.
    J. Giedt, arXiv:0903.2443
  23. 23.
    G.T. Fleming, J.B. Kogut, P.M. Vranas, Phys. Rev. D 64, 034510 (2001) CrossRefADSGoogle Scholar
  24. 24.
    M.G. Endres, PoS (LATTICE 2008) 025 Google Scholar
  25. 25.
    M.G. Endres, Phys. Rev. D 79, 094503 (2009) CrossRefADSGoogle Scholar
  26. 26.
    J. Giedt, R. Brower, S. Catterall, G.T. Fleming, P. Vranas, Phys. Rev. D 79, 025015 (2009) CrossRefADSGoogle Scholar
  27. 27.
    I. Montvay, Nucl. Phys. B 466, 259 (1996) CrossRefADSGoogle Scholar
  28. 28.
    I. Montvay, Comput. Phys. Commun. 109, 144 (1998) zbMATHCrossRefADSGoogle Scholar
  29. 29.
    I. Montvay, E.E. Scholz, Phys. Lett. B 623, 73 (2005) CrossRefADSGoogle Scholar
  30. 30.
    P. Weisz, Nucl. Phys. B 212, 1 (1983) CrossRefMathSciNetADSGoogle Scholar
  31. 31.
    P. Weisz, R. Wohlert, Nucl. Phys. B 236, 397 (1984) [Erratum-ibid. B 247, 544 (1984)] CrossRefMathSciNetADSGoogle Scholar
  32. 32.
    C. Morningstar, M.J. Peardon, Phys. Rev. D 69, 054501 (2004) CrossRefADSGoogle Scholar
  33. 33.
    K. Jansen, C. McNeile, I. Montvay, C.M. Richards, E.E. Scholz, C. Urbach, U. Wenger, PoS (LATTICE 2007) 036 Google Scholar
  34. 34.
    M.A. Clark, A.D. Kennedy, Nucl. Phys. Proc. Suppl. 129, 850 (2004) CrossRefADSGoogle Scholar
  35. 35.
    M.A. Clark, A.D. Kennedy, Phys. Rev. Lett. 98, 051601 (2007) CrossRefADSGoogle Scholar
  36. 36.
    E.E. Scholz, I. Montvay, PoS (LAT2006) 037 Google Scholar
  37. 37.
    W.E. Arnoldi, Q. Appl. Math. 9, 17 (1951) zbMATHMathSciNetGoogle Scholar
  38. 38.
    R. Lehoucq et al., ARPACK Software. http://www.caam.rice.edu/software/ARPACK
  39. 39.
    J. Wuilloud, PhD thesis, Univ. of Münster, 2010 Google Scholar
  40. 40.
    R. Sommer, Nucl. Phys. B 411, 839 (1994) CrossRefADSGoogle Scholar
  41. 41.
    M. Albanese et al., Phys. Lett. B 192, 163 (1987) CrossRefADSGoogle Scholar
  42. 42.
    C.R. Allton et al. (UKQCD Collaboration), Phys. Rev. D 47, 5128 (1993) CrossRefADSGoogle Scholar
  43. 43.
    S.J. Dong, K.F. Liu, Phys. Lett. B 328, 130 (1994) CrossRefADSGoogle Scholar
  44. 44.
    F. Farchioni, G. Münster, R. Peetz, Eur. Phys. J. C 38, 329 (2004) ADSGoogle Scholar
  45. 45.
    M. Lüscher, U. Wolff, Nucl. Phys. B 339, 222 (1990) CrossRefADSGoogle Scholar
  46. 46.
    N. Evans, S. Hsu, M. Schwetz, hep-th/9707260
  47. 47.
    L. Bergamin, P. Minkowski, hep-th/0301155
  48. 48.
    G. Bergner et al., work in progress Google Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2010

Authors and Affiliations

  • K. Demmouche
    • 1
  • F. Farchioni
    • 1
  • A. Ferling
    • 1
  • I. Montvay
    • 2
  • G. Münster
    • 1
    Email author
  • E. E. Scholz
    • 3
  • J. Wuilloud
    • 1
  1. 1.Institut für Theoretische PhysikUniversität MünsterMünsterGermany
  2. 2.Deutsches Elektronen-Synchrotron DESYHamburgGermany
  3. 3.Institut für Theoretische PhysikUniversität RegensburgRegensburgGermany

Personalised recommendations