Advertisement

The European Physical Journal C

, Volume 69, Issue 1–2, pp 315–329 | Cite as

On the evaluation of gluon condensate effects in the holographic approach to QCD

  • Luigi Cappiello
  • Giancarlo D’AmbrosioEmail author
Regular Article - Theoretical Physics

Abstract

In holographic QCD the effects of gluonic condensate can be encoded in a suitable deformation of the 5D metric. We develop two different methods for the evaluation of first order perturbative corrections to masses and decay constants of vector resonances in 5D Hard-Wall models of QCD due to small deformations of the metric. They are extracted either from a novel compact form for the first order correction to the vector two-point function, or from perturbation theory for vector bound-state eigenfunctions: the equivalence of the two methods is shown. Our procedures are then applied to flat and to AdS 5D Hard-Wall models; we complement results of existing literature evaluating the corrections to vector decay constant and to two-pion–one-vector couplings: this is particularly relevant to satisfy the sum rules. We concentrate our attention on the effects for the Gasser–Leutwyler coefficients; we show that as in the Chiral Quark model, the addition of the gluonic condensate improves the consistency, the understanding and the agreement with phenomenology of the holographic model.

Keywords

Decay Constant Holographic Model Gluon Condensate Vector Resonance Pion Decay Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998). Int. J. Theor. Phys. 38, 1113 (1999) zbMATHMathSciNetADSGoogle Scholar
  2. 2.
    S.S. Gubser, I.R. Klebanov, A.M. Polyakov, Phys. Lett. B 428, 105 (1998) CrossRefMathSciNetADSGoogle Scholar
  3. 3.
    E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998) zbMATHMathSciNetGoogle Scholar
  4. 4.
    T. Sakai, S. Sugimoto, Prog. Theor. Phys. 113, 843 (2005) zbMATHCrossRefADSGoogle Scholar
  5. 5.
    J. Erlich, E. Katz, D.T. Son, M.A. Stephanov, Phys. Rev. Lett. 95, 261602 (2005) CrossRefADSGoogle Scholar
  6. 6.
    L. Da Rold, A. Pomarol, Nucl. Phys. B 721, 79 (2005) zbMATHCrossRefADSGoogle Scholar
  7. 7.
    J. Hirn, V. Sanz, J. High Energy Phys. 0512, 030 (2005) CrossRefMathSciNetADSGoogle Scholar
  8. 8.
    A. Karch, E. Katz, D.T. Son, M.A. Stephanov, Phys. Rev. D 74, 015005 (2006). arXiv:hep-ph/0602229 CrossRefADSGoogle Scholar
  9. 9.
    A. Manohar, H. Georgi, Nucl. Phys. B 234, 189 (1984) CrossRefADSGoogle Scholar
  10. 10.
    D. Espriu, E. de Rafael, J. Taron, Nucl. Phys. B 345, 22 (1990). Erratum-ibid. B 355, 278 (1991) CrossRefADSGoogle Scholar
  11. 11.
    I.R. Klebanov, E. Witten, Nucl. Phys. B 556, 89 (1999). arXiv:hep-th/9905104 zbMATHCrossRefMathSciNetADSGoogle Scholar
  12. 12.
    J. Erlich, G.D. Kribs, I. Low, Phys. Rev. D 73, 096001 (2006). arXiv:hep-th/0602110 CrossRefADSGoogle Scholar
  13. 13.
    J. Hirn, N. Rius, V. Sanz, Phys. Rev. D 73, 085005 (2006) CrossRefADSGoogle Scholar
  14. 14.
    A. Pomarol, Phys. Lett. B 486, 153 (2000). arXiv:hep-ph/9911294 CrossRefADSGoogle Scholar
  15. 15.
    N. Arkani-Hamed, M. Porrati, L. Randall, J. High Energy Phys. 0108, 017 (2001). arXiv:hep-th/0012148 CrossRefMathSciNetADSGoogle Scholar
  16. 16.
    D.T. Son, M.A. Stephanov, Phys. Rev. D 69, 065020 (2004). arXiv:hep-ph/0304182 CrossRefADSGoogle Scholar
  17. 17.
    M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Nucl. Phys. B 147, 385 (1979) CrossRefADSGoogle Scholar
  18. 18.
    M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Nucl. Phys. B 147, 448 (1979) CrossRefADSGoogle Scholar
  19. 19.
    J. Bijnens, C. Bruno, E. de Rafael, Nucl. Phys. B 390, 501 (1993). arXiv:hep-ph/9206236 CrossRefADSGoogle Scholar
  20. 20.
    S. Narison, Phys. Lett. B 673, 30 (2009). arXiv:0901.3823 [hep-ph] CrossRefADSGoogle Scholar
  21. 21.
    H.R. Grigoryan, A.V. Radyushkin, Phys. Lett. B 650, 421 (2007). arXiv:hep-ph/0703069 CrossRefADSGoogle Scholar
  22. 22.
    J. Hirn, V. Sanz, Phys. Rev. D 76, 044022 (2007). arXiv:hep-ph/0702005 CrossRefMathSciNetADSGoogle Scholar
  23. 23.
    R.S. Chivukula, M. Kurachi, M. Tanabashi, J. High Energy Phys. 0406, 004 (2004). arXiv:hep-ph/0403112 CrossRefADSGoogle Scholar
  24. 24.
    D. Becciolini, M. Redi, A. Wulzer, J. High Energy Phys. 1001, 074 (2010). arXiv:0906.4562 [hep-ph] CrossRefADSGoogle Scholar
  25. 25.
    E. de Rafael, arXiv:hep-ph/9502254

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2010

Authors and Affiliations

  1. 1.Dipartimento di Scienze FisicheUniversità di Napoli “Federico II”NapoliItaly
  2. 2.INFNSezione di NapoliNapoliItaly

Personalised recommendations