The European Physical Journal C

, Volume 69, Issue 1–2, pp 305–314 | Cite as

Symplectic three-algebra and \(\mathcal{N}=6\), Sp(2NU(1) superconformal Chern–Simons-matter theory

  • Fa-Min ChenEmail author
  • Yong-Shi Wu
Regular Article - Theoretical Physics


We introduce an antisymmetric metric into a 3-algebra and call it a symplectic 3-algebra. The \(\mathcal{N}=6\), Sp(2NU(1) superconformal Chern–Simons-matter theory with SU(4) R-symmetry in three dimensions is constructed by specifying the 3-brackets in a symplectic 3-algebra. We also demonstrate that the \(\mathcal{N}=6\), U(MU(N) theory can be recast into this symplectic 3-algebraic framework.


Gauge Theory Gauge Group Structure Constant High Energy Phys Supersymmetry Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Schwarz, Superconformal Chern–Simons theories. J. High Energy Phys. 0411, 078 (2004). arXiv:hep-th/0411077 CrossRefADSGoogle Scholar
  2. 2.
    D. Gaiotto, X. Yin, Notes on superconformal Chern–Simons-matter theories. J. High Energy Phys. 0708, 056 (2007). arXiv:0704.3740 [hep-th] CrossRefMathSciNetADSGoogle Scholar
  3. 3.
    W. Chen, G.W. Semenoff, Y.S. Wu, Scale and conformal invariance in Chern–Simons-matter field theory. Phys. Rev. D 44, 1625 (1991) MathSciNetADSGoogle Scholar
  4. 4.
    W. Chen, G. Semenoff, Y.S. Wu, Probing topological features in perturbative Chern–Simons gauge theory. Mod. Phys. Lett. A 5, 1833 (1990) zbMATHCrossRefMathSciNetADSGoogle Scholar
  5. 5.
    W. Chen, G.W. Semenoff, Y.S. Wu, Two-loop analysis of Chern–Simons-matter theory. Phys. Rev. D 46, 5521 (1992). arXiv:hep-th/9209005 CrossRefMathSciNetADSGoogle Scholar
  6. 6.
    O.M. Del Cima, D.H.T. Franco, J.A. Helayel-Neto, O. Piguet, An algebraic proof on the finiteness of Yang–Mills–Chern–Simons theory in D=3. Lett. Math. Phys. 47, 265 (1999). arXiv:math-ph/9904030 zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Y. Nambu, Generalized Hamiltonian mechanics. Phys. Rev. D 7, 2405–2412 (1973) MathSciNetADSGoogle Scholar
  8. 8.
    H. Awata, M. Li, D. Minic, T. Yoneya, On the quantization of Nambu brackets. arXiv:hep-th/9906248
  9. 9.
    J. Bagger, N. Lambert, Modeling multiple M2’s. Phys. Rev. D 75, 045020 (2007). arXiv:hep-th/0611108 MathSciNetADSGoogle Scholar
  10. 10.
    J. Bagger, N. Lambert, Gauge symmetry and supersymmetry of multiple M2-branes. Phys. Rev. D 77, 065008 (2008). arXiv:0711.0955 [hep-th] MathSciNetADSGoogle Scholar
  11. 11.
    J. Bagger, N. Lambert, Comments on multiple M2-branes. J. High Energy Phys. 0802, 105 (2008). arXiv:0712.3738 [hep-th] CrossRefMathSciNetADSGoogle Scholar
  12. 12.
    A. Gustavsson, Algebraic structures on parallel M2-branes. arXiv:0709.1260 [hep-th]
  13. 13.
    A. Gustavsson, Selfdual strings and loop space Nahm equations. J. High Energy Phys. 0804, 083 (2008). arXiv:0802.3456 [hep-th] CrossRefMathSciNetADSGoogle Scholar
  14. 14.
    J. Distler, S. Mukhi, C. Papageorgakis, M. Van Raamsdonk, M2-branes on M-folds. J. High Energy Phys. 0805, 038 (2008). arXiv:0804.1256 [hep-th] CrossRefADSGoogle Scholar
  15. 15.
    N. Lambert, D. Tong, Membranes on an orbifold. arXiv:0804.1114 [hep-th]
  16. 16.
    J.P. Gauntlett, J.B. Gutowski, Constraining maximally supersymmetric membrane actions. arXiv:0804.3078 [hep-th]
  17. 17.
    G. Papadopoulos, M2-branes, 3-Lie algebras and Plucker relations. arXiv:0804.2662 [hep-th]
  18. 18.
    J. Gomis, G. Milanesi, J.G. Russo, Bagger–Lambert theory for general Lie algebras. arXiv:0805.1012 [hep-th]
  19. 19.
    S. Benvenuti, D. Rodriguez-Gomez, E. Tonni, H. Verlinde, N=8 superconformal gauge theories and M2 branes. arXiv:0805.1087 [hep-th]
  20. 20.
    P.M. Ho, Y. Imamura, Y. Matsuo, M2 to D2 revisited. arXiv:0805.1202 [hep-th]
  21. 21.
    M.A. Bandres, A.E. Lipstein, J.H. Schwarz, Ghost-free superconformal action for multiple M2-branes. arXiv:0806.0054 [hep-th]
  22. 22.
    J. Gomis, D. Rodriguez-Gomez, M. Van Raamsdonk, H. Verlinde, Supersymmetric Yang–Mills theory from Lorentzian three-algebras. arXiv:0806.0738 [hep-th]
  23. 23.
    O. Aharony, O. Bergman, D.L. Jafferis, J. Maldacena, N=6 superconformal Chern–Simons-matter theories, M2-branes and their gravity duals. arXiv:0806.1218 [hep-th]
  24. 24.
    M. Benna, I. Klebanov, T. Klose, M. Smedback, Superconformal Chern–Simons theories and AdS4/CFT3 correspondence. arXiv:0806.1519 [hep-th]
  25. 25.
    M. Bandres, A. Lipstein, J. Schwarz, Studies of the ABJM theory in formulation with manifest SU(4) R-symmetry. arXiv:0807.0880 [hep-th]
  26. 26.
    E.A. Bergshoeff, M. de Roo, O. Hohm, Multiple M2-branes and the embedding tensor. arXiv:0804.2201 [hep-th]
  27. 27.
    E.A. Bergshoeff, M. de Roo, O. Hohm, D. Roest, Multiple membranes from gauged supergravity. arXiv:0806.2584 [hep-th]
  28. 28.
    E.A. Bergshoeff, O. Hohm, D. Roest, H. Samtleben, E. Sezgin, The superconformal gaugings in three dimensions. arXiv:0807.2841 [hep-th]
  29. 29.
    D. Gaiotto, E. Witten, Janus configurations, Chern–Simons couplings, and the theta-angle in N=4 super Yang–Mills theory. arXiv:0804.2907 [hep-th]
  30. 30.
    K. Hosomichi, K.M. Lee, S. Lee, S. Lee, J. Park, N=4 superconformal Chern–Simons theories with hyper and twisted hyper multiplets. arXiv:0805.3662 [hep-th]
  31. 31.
    K. Hosomichi, K.M. Lee, S. Lee, S. Lee, J. Park, N=5,6 superconformal Chern–Simons theories and M2-branes on orbifolds. arXiv:0806.4977 [hep-th]
  32. 32.
    O. Aharony, O. Bergman, D.L. Jafferis, Fractional M2-branes. arXiv:0807.4924 [hep-th]
  33. 33.
    J. Bagger, N. Lambert, Three-algebras and N=6 Chern–Simons gauge theories. arXiv:0807.0163 [hep-th]
  34. 34.
    M. Schnabl, Y. Tachikawa, Classification of \(\mathcal{N}=6\) superconformal theories of ABJM type. arXiv:0807.1102 [hep-th]
  35. 35.
    V.G. Kac, Lie superalgebras. Adv. Math. 26, 8 (1977) zbMATHCrossRefGoogle Scholar
  36. 36.
    C. Krishnan, C. Maccaferri, Membranes on calibrations. J. High Energy Phys. 0807, 005 (2008). arXiv:0805.3125[hep-th] CrossRefMathSciNetADSGoogle Scholar
  37. 37.
    C. Krishnan, AdS4/CFT3 at one loop. J. High Energy Phys. 0809, 092 (2008). arXiv:0807.4561 [hep-th] CrossRefMathSciNetADSGoogle Scholar
  38. 38.
    L.F. Alday, G. Arutyunov, D. Bykov, Semiclassical quantization of spinning strings in AdS4×CP 3. J. High Energy Phys. 0811, 089 (2008). arXiv:0807.4400 [hep-th] CrossRefMathSciNetADSGoogle Scholar
  39. 39.
    T. McLoughlin, R. Roiban, Spinning strings at one-loop in AdS4×P 3. J. High Energy Phys. 0812, 101 (2008). arXiv:0807.3965 [hep-th] CrossRefMathSciNetADSGoogle Scholar
  40. 40.
    J. Minahan, W. Schulgin, K. Zarembo, Two loop integrability for Chern–Simons theories with \(\mathcal{N}=6\) supersymmetry. arXiv:0901.1142 [hep-th]

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2010

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of UtahSalt Lake CityUSA

Personalised recommendations