Advertisement

The European Physical Journal C

, Volume 68, Issue 3–4, pp 487–503 | Cite as

Infrared exponents and the strong-coupling limit in lattice Landau gauge

  • André Sternbeck
  • Lorenz von Smekal
Regular Article - Theoretical Physics

Abstract

We study the gluon and ghost propagators of lattice Landau gauge in the strong-coupling limit β=0 in pure SU(2) lattice gauge theory to find evidence of the conformal infrared behavior of these propagators as predicted by a variety of functional continuum methods for asymptotically small momenta \(q^{2}\ll\varLambda_{\mathrm{QCD}}^{2}\). In the strong-coupling limit, this same behavior is obtained for the larger values of a 2 q 2 (in units of the lattice spacing a), where it is otherwise swamped by the gauge-field dynamics. Deviations for a 2 q 2<1 are well parameterized by a transverse gluon mass 1/a. Perhaps unexpectedly, these deviations are thus no finite-volume effect but persist in the infinite-volume limit. They furthermore depend on the definition of gauge fields on the lattice, while the asymptotic conformal behavior does not. We also comment on a misinterpretation of our results by Cucchieri and Mendes (Phys. Rev. D 81:016005, 2010).

Keywords

Strong coupling Landau gauge Gluon and ghost propagators Infrared behavior 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.D. Roberts, A.G. Williams, Prog. Part. Nucl. Phys. 33, 477 (1994). doi: 10.1016/0146-6410(94)90049-3. hep-ph/9403224 CrossRefADSGoogle Scholar
  2. 2.
    R. Alkofer, L. von Smekal, Phys. Rep. 353, 281 (2001). doi: 10.1016/S0370-1573(01)00010-2. hep-ph/0007355 MATHCrossRefMathSciNetADSGoogle Scholar
  3. 3.
    C.S. Fischer, J. Phys. G 32, R253 (2006). hep-ph/0605173 ADSGoogle Scholar
  4. 4.
    C.D. Roberts, M.S. Bhagwat, A. Holl et al., Eur. Phys. J. ST 140, 53 (2007). doi: 10.1140/epjst/e2007-00003-5. 0802.0217 Google Scholar
  5. 5.
    L. von Smekal, R. Alkofer, A. Hauck, Phys. Rev. Lett. 79, 3591 (1997). hep-ph/9705242 CrossRefADSGoogle Scholar
  6. 6.
    L. von Smekal, A. Hauck, R. Alkofer, Ann. Phys. 267, 1 (1998). hep-ph/9707327 MATHCrossRefADSGoogle Scholar
  7. 7.
    R. Alkofer, L. von Smekal, Nucl. Phys. A 680, 133 (2000). doi: 10.1016/S0375-9474(00)00402-4. hep-ph/0004141 CrossRefGoogle Scholar
  8. 8.
    C. Lerche, L. von Smekal, Phys. Rev. D 65, 125006 (2002). hep-ph/0202194 ADSGoogle Scholar
  9. 9.
    D. Zwanziger, Phys. Rev. D 65, 094039 (2002). doi: 10.1103/PhysRevD.65.094039. hep-th/0109224 ADSGoogle Scholar
  10. 10.
    J.M. Pawlowski, D.F. Litim, S. Nedelko et al., Phys. Rev. Lett. 93, 152002 (2004). doi: 10.1103/PhysRevLett.93.152002. hep-th/0312324 CrossRefADSGoogle Scholar
  11. 11.
    A. Maas, Phys. Rev. D 75, 116004 (2007). doi: 10.1103/PhysRevD.75.116004. 0704.0722 ADSGoogle Scholar
  12. 12.
    A. Sternbeck, E.-M. Ilgenfritz, M. Müller-Preussker et al., Proc. Sci. LAT2006, 076 (2006). hep-lat/0610053 Google Scholar
  13. 13.
    E.-M. Ilgenfritz, M. Müller-Preussker, A. Sternbeck et al., Braz. J. Phys. 37, 193 (2007). hep-lat/0609043 CrossRefGoogle Scholar
  14. 14.
    A. Sternbeck, L. von Smekal, D.B. Leinweber et al., Proc. Sci. LAT2007, 340 (2007). 0710.1982 Google Scholar
  15. 15.
    A. Cucchieri, T. Mendes, Proc. Sci. LAT2007, 297 (2007). 0710.0412 Google Scholar
  16. 16.
    I.L. Bogolubsky, E.-M. Ilgenfritz, M. Müller-Preussker et al., Proc. Sci. LAT2007, 290 (2007). 0710.1968 Google Scholar
  17. 17.
    A. Cucchieri, T. Mendes, Phys. Rev. Lett. 100, 241601 (2008). doi: 10.1103/PhysRevLett.100.241601. 0712.3517 CrossRefMathSciNetADSGoogle Scholar
  18. 18.
    A. Cucchieri, T. Mendes, Phys. Rev. D 78, 094503 (2008). doi: 10.1103/PhysRevD.78.094503. 0804.2371 ADSGoogle Scholar
  19. 19.
    I.L. Bogolubsky, E.-M. Ilgenfritz, M. Müller-Preussker et al., Phys. Lett. B 676, 69 (2009). doi: 10.1016/j.physletb.2009.04.076. 0901.0736 ADSGoogle Scholar
  20. 20.
    A.C. Aguilar, A.A. Natale, J. High Energy Phys. 08, 057 (2004). doi: 10.1088/1126-6708/2004/08/057. hep-ph/0408254 CrossRefADSGoogle Scholar
  21. 21.
    P. Boucaud et al., J. High Energy Phys. 06, 001 (2006). hep-ph/0604056 CrossRefADSGoogle Scholar
  22. 22.
    D. Dudal, S.P. Sorella, N. Vandersickel et al., Phys. Rev. D 77, 071501 (2008). doi: 10.1103/PhysRevD.77.071501. 0711.4496 ADSGoogle Scholar
  23. 23.
    A.C. Aguilar, D. Binosi, J. Papavassiliou, Phys. Rev. D 78, 025010 (2008). doi: 10.1103/PhysRevD.78.025010. 0802.1870 ADSGoogle Scholar
  24. 24.
    A.C. Aguilar, D. Binosi, J. Papavassiliou, Proc. Sci. LC2008, 050 (2008). 0810.2333 Google Scholar
  25. 25.
    P. Boucaud et al., J. High Energy Phys. 06, 012 (2008). doi: 10.1088/1126-6708/2008/06/012. 0801.2721 CrossRefADSGoogle Scholar
  26. 26.
    P. Boucaud et al., J. High Energy Phys. 06, 099 (2008). doi: 10.1088/1126-6708/2008/06/099. 0803.2161 CrossRefADSGoogle Scholar
  27. 27.
    C.S. Fischer, A. Maas, J.M. Pawlowski, Ann. Phys. 324, 2408 (2009). doi: 10.1016/j.aop.2009.07.009. 0810.1987 MATHCrossRefMathSciNetADSGoogle Scholar
  28. 28.
    A. Sternbeck, L. von Smekal, Proc. Sci. LATTICE2008, 267 (2008). 0810.3765 Google Scholar
  29. 29.
    A. Sternbeck, L. von Smekal, Proc. Sci. CONFINEMENT8, 049 (2008). 0812.3268 Google Scholar
  30. 30.
    V.N. Gribov, Nucl. Phys. B 139, 1 (1978). doi: 10.1016/0550-3213(78)90175-X CrossRefMathSciNetADSGoogle Scholar
  31. 31.
    R. Alkofer, C.S. Fischer, F.J. Llanes-Estrada, Phys. Lett. B 611, 279 (2005). doi: 10.1016/j.physletb.2005.02.043. hep-th/0412330 MathSciNetADSGoogle Scholar
  32. 32.
    J.C. Taylor, Nucl. Phys. B 33, 436 (1971). doi: 10.1016/0550-3213(71)90297-5 CrossRefADSGoogle Scholar
  33. 33.
    C.S. Fischer, J.M. Pawlowski, Phys. Rev. D 75, 025012 (2007). doi: 10.1103/PhysRevD.75.025012. hep-th/0609009 MathSciNetADSGoogle Scholar
  34. 34.
    C.S. Fischer, J.M. Pawlowski, Phys. Rev. D 80, 025023 (2009). doi: 10.1103/PhysRevD.80.025023. 0903.2193 MathSciNetADSGoogle Scholar
  35. 35.
    L. von Smekal, K. Maltman, A. Sternbeck, Phys. Lett. B 681, 336 (2009). doi: 10.1016/j.physletb.2009.10.030. 0903.1696 ADSGoogle Scholar
  36. 36.
    C.S. Fischer, A. Maas, J.M. Pawlowski et al., Ann. Phys. 322, 2916 (2007). doi: 10.1016/j.aop.2007.02.006. hep-ph/0701050 MATHCrossRefMathSciNetADSGoogle Scholar
  37. 37.
    L. von Smekal (2008), 0812.0654
  38. 38.
    D. Zwanziger, Nucl. Phys. B 399, 477 (1993). doi: 10.1016/0550-3213(93)90506-K CrossRefMathSciNetADSGoogle Scholar
  39. 39.
    D. Dudal, J.A. Gracey, S.P. Sorella et al., Phys. Rev. D 78, 065047 (2008). doi: 10.1103/PhysRevD.78.065047. 0806.4348 ADSGoogle Scholar
  40. 40.
    L. von Smekal, M. Ghiotti, A.G. Williams, Phys. Rev. D 78, 085016 (2008). doi: 10.1103/PhysRevD.78.085016. 0807.0480 MathSciNetADSGoogle Scholar
  41. 41.
    J. Braun, H. Gies, J.M. Pawlowski, Phys. Lett. B 684, 262 (2010). doi: 10.1016/j.physletb.2010.01.009. 0708.2413 ADSGoogle Scholar
  42. 42.
    A. Maas, J.M. Pawlowski, D. Spielmann et al., Eur. Phys. J. C (2010). doi: 10.1140/epjc/s10052-010-1306-6. 0912.4203
  43. 43.
    L. von Smekal, D. Mehta, A. Sternbeck et al., Proc. Sci. LAT2007, 382 (2007). arXiv:0710.2410 [hep-lat] Google Scholar
  44. 44.
    K. Langfeld, H. Reinhardt, J. Gattnar, Nucl. Phys. B 621, 131 (2002). doi: 10.1016/S0550-3213(01)00574-0. hep-ph/0107141 MATHCrossRefADSGoogle Scholar
  45. 45.
    A. Sternbeck et al., Proc. Sci. LAT2007, 256 (2007). 0710.2965 Google Scholar
  46. 46.
    P. Boucaud et al., Phys. Rev. D 79, 014508 (2009). doi: 10.1103/PhysRevD.79.014508. 0811.2059 ADSGoogle Scholar
  47. 47.
    A. Sternbeck et al., Proc. Sci. LAT2009, 210 (2009). 1003.1585 Google Scholar
  48. 48.
    K. Langfeld, Phys. Rev. D 76, 094502 (2007). doi: 10.1103/PhysRevD.76.094502. 0704.2635 ADSGoogle Scholar
  49. 49.
    A. Cucchieri, Nucl. Phys. B 508, 353 (1997). doi: 10.1016/S0550-3213(97)00629-9. hep-lat/9705005 CrossRefADSGoogle Scholar
  50. 50.
    T.D. Bakeev, E.-M. Ilgenfritz, V.K. Mitrjushkin et al., Phys. Rev. D 69, 074507 (2004). doi: 10.1103/PhysRevD.69.074507. hep-lat/0311041 ADSGoogle Scholar
  51. 51.
    A. Sternbeck, E.-M. Ilgenfritz, M. Müller-Preussker et al., Phys. Rev. D 72, 014507 (2005). doi: 10.1103/PhysRevD.72.014507. hep-lat/0506007 ADSGoogle Scholar
  52. 52.
    L. von Smekal, A. Jorkowski, D. Mehta et al., Proc. Sci. CONFINEMENT8, 048 (2008). 0812.2992 Google Scholar
  53. 53.
    A. Cucchieri, T. Mendes, Phys. Rev. D 81, 016005 (2010). doi: 10.1103/PhysRevD.81.016005. 0904.4033 ADSGoogle Scholar
  54. 54.
    A. Maas, Phys. Lett. B 689, 107 (2010). doi: 10.1016/j.physletb.2010.04.052. 0907.5185 ADSGoogle Scholar
  55. 55.
    P. de Forcrand, M. Fromm, Phys. Rev. Lett. 104, 112005 (2010). doi: 10.1103/PhysRevLett.104.112005. 0907.1915 CrossRefADSGoogle Scholar
  56. 56.
    C.T.H. Davies et al., Phys. Rev. D 37, 1581 (1988). doi: 10.1103/PhysRevD.37.1581 MathSciNetADSGoogle Scholar
  57. 57.
    A. Cucchieri, T. Mendes, Phys. Rev. D 57, 3822 (1998). doi: 10.1103/PhysRevD.57.3822. hep-lat/9711047 ADSGoogle Scholar
  58. 58.
    J.E. Mandula, M. Ogilvie, Phys. Lett. B 248, 156 (1990) ADSGoogle Scholar
  59. 59.
    A. Cucchieri, Phys. Lett. B 422, 233 (1998). doi: 10.1016/S0370-2693(98)00046-X. hep-lat/9709015 ADSGoogle Scholar
  60. 60.
    D.B. Leinweber, J.I. Skullerud, A.G. Williams et al. (UKQCD). Phys. Rev. D 60, 094507 (1999). doi: 10.1103/PhysRevD.60.094507. hep-lat/9811027 ADSGoogle Scholar
  61. 61.
    A. Voigt, E.-M. Ilgenfritz, M. Müller-Preussker et al., Phys. Rev. D 78, 014501 (2008). doi: 10.1103/PhysRevD.78.014501. 0803.2307 CrossRefADSGoogle Scholar
  62. 62.
    Y. Nakagawa et al., Phys. Rev. D 79, 114504 (2009). doi: 10.1103/PhysRevD.79.114504. 0902.4321 MathSciNetADSGoogle Scholar
  63. 63.
    A. Sternbeck, PhD thesis, Humboldt University Berlin (2006). hep-lat/0609016

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2010

Authors and Affiliations

  1. 1.Centre for the Subatomic Structure of Matter, School of Chemistry & PhysicsThe University of AdelaideAdelaideAustralia

Personalised recommendations