Advertisement

The European Physical Journal C

, Volume 69, Issue 1–2, pp 169–178 | Cite as

The QCD phase structure at high baryon density

  • P. Castorina
  • R. V. Gavai
  • H. SatzEmail author
Regular Article - Theoretical Physics

Abstract

We consider the possibility that color deconfinement and chiral symmetry restoration do not coincide in dense baryonic matter at low temperature. As a consequence, a state of massive “constituent” quarks would exist as an intermediate phase between confined nuclear matter and the plasma of deconfined massless quarks and gluons. We discuss the properties of this state and its relation to the recently proposed quarkyonic matter.

Keywords

Quark Mass Chiral Symmetry Chiral Symmetry Breaking Constituent Quark Baryon Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Reddy, Acta Phys. Pol. B 33, 4101 (2002) ADSGoogle Scholar
  2. 2.
    A. Kurkela, P. Romatschke, A. Vuorinen, arXiv:0912.1856
  3. 3.
    M. Alford, K. Rajagopal, T. Schäfer, A. Schmitt, Rev. Mod. Phys. 80, 1455 (2008) CrossRefADSGoogle Scholar
  4. 4.
    E.V. Shuryak, Phys. Lett. 107B, 103 (1981) ADSGoogle Scholar
  5. 5.
    E.V. Shuryak, Phys. Rep. 115, 151 (1984) CrossRefADSGoogle Scholar
  6. 6.
    R. Pisarski, Phys. Lett. 110B, 155 (1982) ADSGoogle Scholar
  7. 7.
    G. Baym, in Quark Matter and Heavy Ion Collisions, ed. by H. Satz (World Scientific, Singapore, 1982) Google Scholar
  8. 8.
    J. Cleymans, K. Redlich, H. Satz, E. Suhonen, Z. Phys. C 33, 151 (1986) CrossRefADSGoogle Scholar
  9. 9.
    H. Schulz, G. Röpke, Z. Phys. C 35, 379 (1987) CrossRefADSGoogle Scholar
  10. 10.
    A. Drago, M. Fiolhais, U. Tambini, Nucl. Phys. A 588, 801 (1995) CrossRefADSGoogle Scholar
  11. 11.
    H. Toki, K. Suzuki, Prog. Theor. Phys. 87, 1435 (1992) CrossRefADSGoogle Scholar
  12. 12.
    P. Guo, A.P. Szczepaniak, arXiv:0902.1316 [hep-ph]
  13. 13.
    T. Banks, A. Casher, Nucl. Phys. B 169, 103 (1980) CrossRefMathSciNetADSGoogle Scholar
  14. 14.
    O. Kaczmarek, F. Zantow, Phys. Rev. D 71, 114510 (2005) CrossRefADSGoogle Scholar
  15. 15.
    M. Döring, K. Hübner, O. Kaczmarek, F. Karsch, Phys. Rev. D 75, 05404 (2007) CrossRefGoogle Scholar
  16. 16.
    F. Karsch, E. Laermann, A. Peikert, Nucl. Phys. B 605, 579 (2001) CrossRefADSGoogle Scholar
  17. 17.
    K. Hübner, F. Karsch, O. Kaczmarek, O. Vogt, Phys. Rev. D 77, 074504 (2008) CrossRefADSGoogle Scholar
  18. 18.
    L. McLerran, R. Pisarski, Nucl. Phys. A 796, 83 (2007) CrossRefADSGoogle Scholar
  19. 19.
    A. Andronic et al., arXiv:0911.4806 [hep-ph], for a recent summary and further references
  20. 20.
    I.Ya. Pomeranchuk, Dokl. Akad. Nauk SSSR 78, 889 (1951) Google Scholar
  21. 21.
    D. Stauffer, A. Aharony, Introduction to Percolation Theory (Taylor and Francis, London, 1994) Google Scholar
  22. 22.
    J.J. Binney, N.J. Dowrick, A.J. Fisher, M.E.J. Newman, The Theory of Critical Phenomena (Clarendon Press, Oxford, 1992) zbMATHGoogle Scholar
  23. 23.
    A. Bazavov et al., Phys. Rev. D 80, 014504 (2009). See for the most recent study and references to earlier literature CrossRefADSGoogle Scholar
  24. 24.
    E.M. Levin, L.L. Frankfurt, JETP Lett. 2, 65 (1965) ADSGoogle Scholar
  25. 25.
    H.J. Lipkin, F. Scheck, Phys. Rev. Lett. 16, 71 (1966) CrossRefADSGoogle Scholar
  26. 26.
    H. Satz, Phys. Rev. Lett. 19, 1453 (1967) CrossRefADSGoogle Scholar
  27. 27.
    V.A. Novikov, M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Ann. Phys. 105, 276 (1977). See for an early reference to such a picture CrossRefADSGoogle Scholar
  28. 28.
    E.V. Shuryak, A.I. Vainshtein, Nucl. Phys. B 199, 451 (1982) CrossRefADSGoogle Scholar
  29. 29.
    C. Amsler et al. (Particle Data Group), Phys. Lett. B 667, 1 (2008). For m c, we use the \({\overline{MS}}\) value at scale 2 GeV, which agrees with that found in potential model studies; for m b, we use instead the 1S value, which is closer to that found in potential model studies than the \({\overline{MS}}\) value at scale 2 GeV CrossRefADSGoogle Scholar
  30. 30.
    H.D. Politzer, Nucl. Phys. B 117, 397 (1976) CrossRefADSGoogle Scholar
  31. 31.
    O. Kaczmarek, F. Karsch, P. Petreczky, F. Zantow, Phys. Rev. D 70, 074505 (2004) CrossRefADSGoogle Scholar
  32. 32.
    B. Povh, J. Hüfner, Phys. Rev. Lett. 58, 1612 (1987) CrossRefADSGoogle Scholar
  33. 33.
    G. Baym, Physica 96A, 131 (1979) ADSGoogle Scholar
  34. 34.
    T. Çelik, F. Karsch, H. Satz, Phys. Lett. 97B, 128 (1980) ADSGoogle Scholar
  35. 35.
    V. Magas, H. Satz, Eur. Phys. J. C 32, 115 (2003) CrossRefADSGoogle Scholar
  36. 36.
    P. Castorina, K. Redlich, H. Satz, Eur. Phys. J. C 59, 67 (2009) CrossRefADSGoogle Scholar
  37. 37.
    C.M. Fortuin, P.W. Kasteleyn, J. Phys. Soc. Jpn. Suppl. 26, 11 (1969) ADSGoogle Scholar
  38. 38.
    C.M. Fortuin, P.W. Kasteleyn, Physica 57, 536 (1972) CrossRefMathSciNetADSGoogle Scholar
  39. 39.
    A. Coniglio, W. Klein, J. Phys. A 13, 2775 (1980) CrossRefADSGoogle Scholar
  40. 40.
    S. Fortunato, H. Satz, Phys. Lett. B 475, 311 (2000) zbMATHCrossRefMathSciNetADSGoogle Scholar
  41. 41.
    S. Fortunato, F. Karsch, P. Petreczky, H. Satz, Phys. Lett. 502, 321 (2001) zbMATHGoogle Scholar
  42. 42.
    F. Karsch, H. Satz, Phys. Rev. D 21, 1168 (1980) CrossRefADSGoogle Scholar
  43. 43.
    G. Biroli, Nat. Phys. 3, 222 (2007) CrossRefGoogle Scholar
  44. 44.
    K.W. Kratky, J. Stat. Phys. 52, 1413 (1988) zbMATHCrossRefMathSciNetADSGoogle Scholar
  45. 45.
    E. Beth, G.E. Uhlenbeck, Physica 4, 915 (1937) CrossRefADSGoogle Scholar
  46. 46.
    R. Dashen, S.-K. Ma, H.J. Bernstein, Phys. Rev. 187, 345 (1969) zbMATHCrossRefADSGoogle Scholar
  47. 47.
    V. Goloviznin, H. Satz, Z. Phys. C 57, 671 (1993) CrossRefADSGoogle Scholar
  48. 48.
    G. Boyd, J. Engels, F. Karsch, E. Laermann, C. Legeland, M. Lütkemeier, B. Petersson, Nucl. Phys. B 469, 419 (1996) CrossRefADSGoogle Scholar
  49. 49.
    S. Ekelin, in Strong Interactions and Gauge Theories, ed. by J. van Tran Thanh (Editions Frontières, Gif-sur Yvette, 1986) Google Scholar
  50. 50.
    J.F. Donohue, K.S. Sateesh, Phys. Rev. D 38, 360 (1988) CrossRefADSGoogle Scholar
  51. 51.
    M. Anselmino, S. Ekelin, D.B. Lichtenberg, E. Predazzi, Rev. Mod. Phys. 65, 1199 (1993) CrossRefADSGoogle Scholar
  52. 52.
    R. Hagedorn, Nuovo Cim. Suppl. 3, 147 (1965) Google Scholar
  53. 53.
    R. Hagedorn, Nuovo Cim. 56A, 1027 (1968) CrossRefADSGoogle Scholar
  54. 54.
    K. Bardakci, S. Mandelstam, Phys. Rev. 184, 1640 (1969) CrossRefADSGoogle Scholar
  55. 55.
    S. Fubini, G. Veneziano, Nuovo Cim. 64A, 811 (1969) CrossRefADSGoogle Scholar
  56. 56.
    K. Huang, S. Weinberg, Phys. Rev. Lett. 25, 855 (1970) CrossRefADSGoogle Scholar
  57. 57.
    H. Satz, Fortschr. Phys. 33, 259 (1985) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2010

Authors and Affiliations

  1. 1.Dipartimento di FisicaUniversità di CataniaCataniaItaly
  2. 2.INFN Sezione di CataniaCataniaItaly
  3. 3.Tata Institute for Fundamental ResearchMumbaiIndia
  4. 4.Fakultät für PhysikUniversität BielefeldBielefeldGermany

Personalised recommendations