Advertisement

The European Physical Journal C

, Volume 69, Issue 1–2, pp 67–73 | Cite as

Charge asymmetry in W + jets production at the LHC

  • Chun-Hay KomEmail author
  • W. James Stirling
Regular Article - Theoretical Physics

Abstract

The charge asymmetry in W ±+ jets production at the LHC can serve to calibrate the presence of New Physics contributions. We study the ratio \(\sigma(W^{+}+n\mbox{ jets})/\sigma(W^{-}+n\mbox{ jets})\) in the Standard Model for n≤4, paying particular attention to the uncertainty in the prediction from higher-order perturbative corrections and uncertainties in parton distribution functions. We show that these uncertainties are generally of order a few percent, making the experimental measurement of the charge asymmetry ratio a particularly useful diagnostic tool for New Physics contributions.

Keywords

Total Cross Section Parton Distribution Function Charge Asymmetry Lead Order Scale Choice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Eur. Phys. J. C 63, 189 (2009). arXiv:0901.0002 [hep-ph] CrossRefADSGoogle Scholar
  2. 2.
    W.J. Stirling, Presented at the ‘Workshop on Higgs Boson Phenomenology’, ETH Zürich, Switzerland, January 2009, slides available at https://indico.desy.de/materialDisplay.py?contribId=4&materialId=slides&confId=1356
  3. 3.
    The CMS Collaboration, CMS Physics Analysis Summary CMS PAS TOP-09-003 Google Scholar
  4. 4.
    J.M. Campbell, R.K. Ellis, Phys. Rev. D 65, 113007 (2002). arXiv:hep-ph/0202176 CrossRefADSGoogle Scholar
  5. 5.
    J.M. Campbell, R.K. Ellis, http://mcfm.fnal.gov/
  6. 6.
    F.A. Berends, H. Kuijf, B. Tausk, W.T. Giele, Nucl. Phys. B 357, 32 (1991) CrossRefADSGoogle Scholar
  7. 7.
    C.F. Berger, et al., Phys. Rev. Lett. 102, 222001 (2009). arXiv:0902.2760 [hep-ph] CrossRefADSGoogle Scholar
  8. 8.
    C.F. Berger, et al., Phys. Rev. D 80, 074036 (2009). arXiv:0907.1984 [hep-ph] CrossRefADSGoogle Scholar
  9. 9.
    J.R. Andersen, V. Del Duca, F. Maltoni, W.J. Stirling, J. High Energy Phys. 0105, 048 (2001). arXiv:hep-ph/0105146 CrossRefADSGoogle Scholar
  10. 10.
    J.R. Andersen, J.M. Smillie, J. High Energy Phys. 1001, 039 (2010). arXiv:0908.2786 [hep-ph] CrossRefADSGoogle Scholar
  11. 11.
    J.R. Andersen, A. Sabio Vera, Phys. Lett. B 567, 116 (2003). arXiv:hep-ph/0305236 zbMATHCrossRefMathSciNetADSGoogle Scholar
  12. 12.
    J.R. Andersen, A. Sabio Vera, Nucl. Phys. B 679, 345 (2004). arXiv:hep-ph/0309331 zbMATHCrossRefADSGoogle Scholar
  13. 13.
    J.R. Andersen, Phys. Lett. B 639, 290 (2006). arXiv:hep-ph/0602182 CrossRefADSGoogle Scholar
  14. 14.
    J.R. Andersen, C.D. White, Phys. Rev. D 78, 051501 (2008). arXiv:0802.2858 [hep-ph] CrossRefADSGoogle Scholar
  15. 15.
    J.R. Andersen, V. Del Duca, C.D. White, J. High Energy Phys. 0902, 015 (2009). arXiv:0808.3696 [hep-ph] CrossRefADSGoogle Scholar
  16. 16.
    P.M. Nadolsky, et al., Phys. Rev. D 78, 013004 (2008). arXiv:0802.0007 [hep-ph] CrossRefADSGoogle Scholar
  17. 17.
  18. 18.

Copyright information

© Springer-Verlag / Società Italiana di Fisica 2010

Authors and Affiliations

  1. 1.Cavendish LaboratoryCambridgeUK

Personalised recommendations